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Executive summary 
 

Cloud cover is a limiting factor in exploiting data acquired by optical spaceborne remote sensing 

sensors. Multiple methods have been developed to address the problem of cloud and cloud shadow 

detection in satellite imagery, but very few studies were carried out to quantitatively inter-compare 

state-of-the-art methods in this domain. This report summarizes results of the first Cloud Masking 

Inter-comparison eXercise (CMIX) conducted within the Committee Earth Observation Satellites 

(CEOS) Working Group on Calibration & Validation (WGCV). CMIX is an international collaborative 

effort aimed at inter-comparing cloud detection algorithms for medium-spatial resolution (10-30 m) 

spaceborne optical sensors. The focus of this effort was on open, free and repetitive imagery acquired 

by Landsat 8 (NASA/USGS) and Sentinel-2 (ESA) missions. Ten algorithms developed by ten 

organizations representing universities and industry, as well as space agencies (CNES, ESA, DLR, and 

NASA), were evaluated within the CMIX. Those algorithms varied in principles and concepts utilized 

and were based on spectral properties, spatial and temporal features, as well as machine learning 

methods. Algorithms outputs were evaluated against existing publicly available reference (“ground 

truth”) cloud mask datasets. Those datasets varied in the way they were sampled and geographically 

distributed, sample unit used (points, polygons, full image labels), and generated (experts, machine 

learning, sky images). Within CMIX, a qualitative definition of “cloud” was adopted, which provides an 

absolute (spectrally non-dependent) indication of cloudiness in the satellite image. Though different 

cloud masking algorithms produce different output cloud layers, ultimately each cloud mask was 

converted to “cloud” and “non-cloud” values, so the best matching inter-comparison could be 

performed. Algorithms were compared using the same set of data under the same conditions. The 

CMIX experiment did not address the issue of cloud shadow detection. Nevertheless, cloud shadow is 

planned to be included in a second round of CMIX. 

Overall, the performance of algorithms varied depending on the reference dataset, which can be 

attributed to differences in cloud definitions used in producing reference datasets. More consensus 

among algorithms was achieved for thick clouds (which were opaque and had less uncertainties in 

cloud definitions) than thin/transparent clouds, detection of which relied on various definitions and 

intended applications. Not only CMIX allowed identification of strengths and weaknesses of existing 

algorithms and potential areas of improvements, but also the problems with existing reference 

datasets. The report concludes with recommendations on generating new reference datasets, metrics 

and analysis framework to be further exploited and inclusion of additional datasets to be considered 

within future CMIX activities. 
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1 Introduction 

1.1 Objective 
The Cloud Masking Inter-comparison eXercise (CMIX) is an international collaborative initiative in the 

frame of Committee Earth Observation Satellites (CEOS) Working Group on Calibration & Validation 

(WGCV) to inter-compare a set of cloud detection algorithms for space-borne medium-spatial 

resolution (10-30 m) optical sensors. The exercise focuses on Landsat 8 and Sentinel-2 imagery 

acquired over various locations and under a range of cloud conditions. The validation of cloud 

screening outputs is based on existing reference (“ground truth”) cloud mask datasets. The inter-

comparison of cloud masks is expected to contribute to the better understanding of strengths, 

limitations and applicability of different algorithms. 

1.2 Scope 
This document provides a quantitative inter-comparison between various cloud masking algorithms 

for Landsat 8 and Sentinel-2 against existing reference cloud datasets. Within CMIX, a qualitative 

definition of “cloud” was adopted, which provides an absolute (spectrally non-dependent) indication 

of cloudiness in the satellite image. Though different cloud masking algorithms produce different 

output cloud layers, ultimately each cloud mask was converted to “cloud” and “non-cloud” values, so 

the best matching inter-comparison could be performed. Algorithms were compared using the same 

set of data under the same conditions. It was communicated to algorithm providers that if the 

algorithm was developed/calibrated using the reference cloud dataset, that algorithm was excluded in 

the inter-comparison using that dataset. 

 

2 Submitted Algorithms and participants 
Nine participants, representing space agencies, universities, and the private sector, have submitted 10 

algorithms to the CMIX. A summary of cloud-masking algorithms is presented in Table 1, while the 

detailed description is given in the subsequent subsections. 

It is important to mention again that a binary masking of cloud/non-cloud was a requirement made to 

all participants prior to the exercise. Nearly all algorithms provide more detailed information on clouds, 

with some providing even cloud probability information on pixel level, which had to be converted into 

this binary mask. Very detailed information can be complicated to be handled by the users but give a 

high level of freedom for adaptions to users’ needs/preferences. 

 

Table 1: Algorithm characteristics (L8: Landsat 8, S2: Sentinel-2) 

Processor Organization Methodology Provided 

resolution, 

m 

Temporality Cloud mask 

dilation 

(buffer) 

ATCOR DLR Spectral tests L8: 30 

S2: 20 

Mono No 

CD-FCNN University of 
Valencia 

Machine learning L8: 30 

S2: 10/20/60 

Mono No 
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Fmask 

4.0 CCA 

algorithm 

USGS Spectral tests L8: 30 

S2:20 

Mono Medium 

FORCE Humboldt-
Universität 
zu Berlin 

Spectral test 

+parallax (S2 only) 

L8: 30 

S2: 10 

Mono Medium/Large 

IdePix Brockmann 
Consult 

Spectral tests  S2: 20 Mono Small 

InterSSIM Sinergise Machine learning + 

spatio­temporal 

context 

S2: 10 Multi Medium 

LaSRC NASA / 
University of 
Maryland 

Spectral tests L8: 30 

S2: 10 

Mono Small 

MAJA CNES/CESBIO Spectral tests S2: 240 Multi Large 

s2cloudle

ss 

Sinergise Machine learning S2: 10 Mono Medium 

sen2cor ESA / 
Telespazio 
France / DLR 

Spectral test + 

auxiliary data 

S2: 20 Mono No 

 

2.1 ATCOR 
The first version of the ATCOR model was developed in 1990 (Richter, 1990). Over the years the model 

was continually improved and now it supports the mono-temporal atmospheric correction processing 

of multispectral and hyperspectral imagery in the reflective spectrum (400 – 2500 nm), as well as the 

thermal spectrum (7 – 14 µm). 

ATCOR software code is written in IDL. ATCOR version 9.3.0 was used for the CMIX processing. 

The ATCOR processor contains a scene pre-classification module. It is based on simple spectral criteria 

with the top-of-atmosphere (TOA) reflectance. CMIX processing of ATCOR did not use a Digital 

Elevation Model (DEM) and no other auxiliary data. 

Pre-classification module classifies a satellite image into the following classes (Richter and Schläpfer, 

2016): 

• Land 

• Water 

• Non-cirrus cloud 

• Cirrus cloud 

• Snow/ice 

• Cloud/shadow & topographic shadow. 

Pre-classification results are provided both at 10 m and 20 m spatial resolution for Sentinel-2 and at 

30 m spatial resolution for Landsat 8. ATCOR uses a 100 m buffer for clouds, 220 m buffer for cloud 

shadow and a 20 m buffer for snow. 

The processing time (Intel 3.5 GHz PC, Ubuntu 14.04) for complete atmospheric correction including 

pre-classification is as follows: 
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• Landsat 8 OLI (7711 × 7861 pixels)    flat terrain 2 min 

with DEM 8 min 

 

• Sentinel-2: import of jp2 files      4 min 

 (conversion into layer-stacked radiance cubes:  

13 bands at 20 m, 4 bands at 10 m) 

• S2 surface reflectance: 

o 13 band cube (5490 × 5490 pixels)  flat terrain 3 min 

         with DEM 6 min 

o 4 band cube (10,980 × 10,980 pixels) flat terrain 2 min 

        with DEM 4 min 

ATCOR provided pre-classification results for CMIX at 20 m spatial resolution for Sentinel-2 data and 

at 30 m spatial resolution for Landsat 8 data.  

The classes in the output for CMIX are aggregated and coded as follows: 

0: geocoded background 

1: clear 

2: semi-transparent cloud 

3: cloud 

4: cloud shadow 

Values 1 and 4 were used for “non-cloud” class, and 2 and 3 for “cloud” class. 

Note, that not all provided data products could be successful processed with ATCOR because of: 

• solar zenith angle being larger than 75 deg. ATCOR processing is limited to solar zenith angles 

less than 75 degree, or 

• the provided Landsat data (L8Biome data set) did not have the UTM map-projection requested 

by ATCOR (those scenes are in the polar projection). 

 

2.2 CD-FCNN (University of Valencia) 
The University of Valencia proposal for CMIX presents a cloud detection approach based on deep 

learning methods. It is intended to be applied to a single multispectral image from medium spatial 

resolution satellites, such as Landsat 8 and Sentinel-2. Cloud detection constitutes a complex 

classification problem due to the high variability of cloud characteristics, surface reflectance, and 

atmospheric conditions. Hence, statistical deep learning methods require a huge amount of manually 

annotated data in order to train accurate cloud detection models. This is a major difficulty, since quality 

labeled datasets usually do not exist, or are not publicly available, for most satellite sensors. Therefore, 

it is proposed to train fully convolutional neural networks using well established Landsat 8 datasets 

that could be also transferred to solve cloud detection in Sentinel-2 images. After a minimum 

adaptation of Sentinel-2 data, in terms of band selection and spatial resolution, the trained Landsat 8 

models are directly applied to Sentinel-2. In particular, the method is based on a modified (simpler) 

version of the U-Net architecture proposed by the authors in (Mateo-García et al., 2020). Training and 

testing details of the final cloud detection model can be found in (López-Puigdollers et al., 2021), and a 

Python implementation of the proposed cloud detection algorithm is provided in a public repository 

(https://github.com/IPL-UV/DL-L8S2-UV) in order to allow the community to compare the proposed 

transfer models for both Landsat 8 and Sentinel-2 images. 
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Regarding the spatial resolution, it is worth nothing that all bands have been resampled to the native 

Landsat 8 resolution of 30 m. Therefore, since Sentinel-2 images have bands at several spatial 

resolutions of 10, 20 and 60 m, the resulting cloud mask is spatially resampled from 30 m to the 

corresponding resolution. In all this process, the work is done at a pixel level and no spatial dilation of 

the cloud mask is considered at any stage. The developed models are benchmarked against operational 

state-of-the-art cloud detection algorithms of both Landsat 8 and Sentinel-2. Experimental results 

show that the proposed transfer learning approach provides competitive accuracy on both Landsat 8 

and Sentinel-2 datasets. However, a strong dependency on the particular labeled dataset used for 

training and validating the models appears on the results, which comes from the labeling process, and 

is usually neglected in most studies (López-Puigdollers et al., 2021). 

The CD-FCNN cloud masks were provided in a binary mode: 1 – “cloud” and 0 – “non-cloud”. 

For this exercise it is important to note that CD-FCNN was trained based on the L8 Biome and the L8 

SPARCS datasets (80% and 20%, respectively). L8Biome dataset is also part of the CMIX reference 

dataset (§ 3.1.4), so the results provided for the L8Biome dataset have to be neglected.  

2.3 Fmask 4.0 CCA algorithm (USGS EROS)  
Function of mask (Fmask) 4.0 is an algorithm for automated cloud and cloud shadow detection in 

Landsat 4-8 and Sentinel-2 images. Fmask works on a single scene basis, uses spectral tests, and creates 

a 3-pixel buffer around clouds and cloud shadows. It is resolution independent. Fmask is an original 

algorithm developed at Boston University (Zhu et al., 2015; Qui et al., 2017, 2019). For Fmask 4.0 three 

major innovative improvements were made as follows: (1) integration of auxiliary data, where Global 

Surface Water Occurrence (GSWO) data was used to improve the separation of land and water, and a 

global Digital Elevation Model (DEM) was used to normalize thermal and cirrus bands; (2) development 

of new cloud probabilities, in which a Haze Optimized Transformation (HOT)-based cloud probability 

was designed to replace temperature probability for Sentinel-2 images, and cloud probabilities were 

combined and re-calibrated for different sensors against a global reference dataset; and (3) utilization 

of spectral-contextual features, where a Spectral Contextual Snow Index (SCSI) was created for better 

distinguishing snow/ice from clouds in polar regions, and a morphology-based approach was applied 

to reduce the commission error in bright land surfaces (e.g., urban/built-up and mountain snow/ice). 

In Fmask, pixel values 4 (Cloud) or 6 (Clear with dilated cloud) were used as “cloud” class, whereas all 

others were used as “non-cloud” class. 

2.4 FORCE (Humboldt-Universität zu Berlin) 
The cloud masking implemented in FORCE (Framework for Operational Radiometric Correction for 

Environmental monitoring, (Frantz, 2019), freely available from https://github.com/davidfrantz/force) 

is part of a mono-temporal Level 2 Processing System capable of generating Analysis Ready Data (ARD) 

for the Landsat and Sentinel-2 sensors. The cloud masking has branched from Fmask version 1.6.3 (Zhu 

and Woodcock, 2012), and has been developed in parallel since then. Updates from the original 

developers were partially incorporated (Zhu et al., 2015). Major modifications included the dropping 

of the termination criteria for shadow matching, i.e., shadow detection is more aggressive compared 

to the original code; it is expected that shadow commission errors are somewhat larger, however it 

was decided to favor commission over omission (Frantz et al., 2015). The similarity metric for matching 

shadows was modified, i.e. clouds were entirely excluded from the match (Frantz et al., 2016), and the 

shadow probability was incorporated into the match similarity to somewhat counterbalance 

commission errors that result from switching off the termination criterion. In addition, cloud shadows 

are not matched over water to reduce frequent commission errors over lakes and rivers. Furthermore, 

a darkness filter was included to mitigate false cloud detections in bifidly structured dryland areas, 
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where the scene-based temperature distribution tests for Landsat could result in commission errors of 

cold image parts, e.g. riverine vegetation in a desert image (Frantz et al., 2015). Cirrus masking is based 

on an elevation-dependent equation (Baetens et al., 2019). The most notable difference to the original 

Fmask, however, is the complete replacement of the cloud probability module for Sentinel-2 with a 

new algorithm that makes use of the Cloud Displacement Index, which is formulated to enhance 

parallax effects in highly correlated NIR bands (Frantz et al., 2018) – it should be noted that a modified 

version of this parallax-based procedure was adopted in the original developer’s version of Fmask 4.0 

(Qiu et al., 2019). The FORCE cloud masking is designed to aggressively detect clouds and cloud 

shadows to increase producer’s accuracy at the deliberate expense of cloud commission for its safe 

usage in time series applications. Circular buffers are used to reduce false negatives (300 m for opaque 

clouds; 3 and 1 pixels at provided resolution for cloud shadows and snow, respectively).1 FORCE 

provides quality bits, wherein 12 quality indicators with respect to atmospheric conditions are present 

(Frantz, 2019). Multiple of these indicators can be set simultaneously for each pixel, e.g. snow and 

cloud. This quality product is generated at 30 m and 10 m resolution for Landsat and Sentinel-2 images, 

respectively. 

In FORCE, pixel values with bits 1-2 set to ‘01’ (cloud buffer), ‘10’ (opaque cloud) or ‘11’ (cirrus cloud) 

were used as “cloud” class, whereas all other pixels were used as “non-cloud” class.2 In CMIX, the 30m 

SRTM DEM, filled with the 30m ASTER DEM was used for cirrus detection. All images were processed 

with FORCE v. 3.0-dev. 

 

 

2.5 IdePix (Brockmann Consult) 
IdePix (Identification of Pixels) is a multi-sensor pixel identification tool. It classifies pixels to a series of 

categories for further processing using a mono-temporal approach. The uniqueness consists of a 

certain set of features, which are calculated for each instrument, complemented by instrument specific 

features, a decision tree as well as probabilistic combination of these features in order to calculate a 

set of pixel classification attributes. Many of the instrument implementations include a neural network 

trained on manually classified pixels, but not the one for S2. The final classification is non-exclusive 

and therefore allows multiple classes to be set for a single pixel. The implementation of how the 

features are calculated is instrument specific. IdePix derives cloud and cirrus on multiple confidence 

levels, as well as cloud shadow, mountain shadow, snow and water. IdePix can be used as a stand-

alone tool. 

Important note for this exercise: A set of Sentinel-2 L1C products acquired during 2016 from multiple 

locations of the globe had been used to define adequate thresholds for the single tests. These products 

are not part of any validation dataset. 

Cloud and snow detection  

The following features (Table 2), including how they are calculated for Sentinel 2 instrument, are used 

in the decision tree. The decision tree is illustrated in Figure 1.  

 
1 After CMIX the algorithm was adapted based on the findings, to now allow the user to define custom buffers. 
2 https://force-eo.readthedocs.io/en/latest/components/lower-level/level2/format.html 

https://force-eo.readthedocs.io/en/latest/components/lower-level/level2/format.html
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Table 2: Sentinel-2 IdePix – features 

Feature Explanation/ Calculation 

NDSI NDSI = (B3-B11)/(B3+B11) 

NDCI NDCI = (B8A-B11)/(B8A+B11) 

B3B11 B3B11 = B3/B11 

VISBRIGHT VISBRIGHT = (B2+B3+B4)/3 

TC1 TC1 = 0.3029 B2 + 0.2786 B3 + 0.4733 B4 + 0.5599 B8A + 0.508 B11 + 0.1872 B12 

TC4 TC4 = -0.8239 B2 + 0.0849 B3+ 0.4396 B4- 0.058 B8A + 0.2013 B11 – 0.2773 B12 

TC4CIRRUS TC4CIRRUS = -0.8239 B2+ 0.0849 B3+ 0.4396 B4- 0.058 B8A + 0.2013 B11 – 0.2773 B12 – B10 

 

The pixel identification (IdePix) for Sentinel-2 is only working in single resolution (10m, 20m, 60m, or 

any specified/input resolution). The flags identified by IdePix are listed in the table (Table 3) and shown 

in the decision tree below (Figure 1). 

Cloud edge pixels (CLOUD_BUFFER) are in principle regarded as neighbor pixels of a ‘cloud’ 

(CLOUD_SURE and CLOUD_AMBIGUOUS) as identified before in the pixel classification. The width of 

this edge (in number of pixels) can be set by the user. The computation is done using a moving window 

filter approach. 
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Figure 1: IdePix – Decision tree for Sentinel 2 
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Table 3: Sentinel-2 IdePix flagging 

Bit  
Integer 

value 
Flag name Description 

1 1 IDEPIX_INVALID Invalid pixels 

2 2 IDEPIX_CLOUD Pixels which are either cloud_sure 

3 4 IDEPIX_CLOUD_AMBIGUOUS 
Semi transparent clouds, or clouds 

where the detection level is uncertain 

4 8 IDEPIX_CLOUD_SURE 
Fully opaque clouds with full confidence 

of their detection 

5 16 IDEPIX_CLOUD_BUFFER 

A buffer of n pixels around a cloud. N is 

a user supplied parameter. Applied to 

pixels masked as ‘cloud’ 

6 32 IDEPIX_CLOUD_SHADOW 

Pixel is affected by a cloud shadow 

(combination of shifted cloud mask in 

cloud gaps and dark clusters coinciding 

with a corrected shifted cloud mask) 

7 64 IDEPIX_SNOW_ICE Clear snow/ice pixels 

8 128 IDEPIX_BRIGHT Bright pixels 

9 256 IDEPIX_WHITE White pixels 

10 512 IDEPIX_COASTLINE Pixels at a coastline 

11 1024 IDEPIX_LAND Clear land pixels 

12 2048 IDEPIX_CIRRUS_SURE 
Cirrus clouds with full confidence of 

their detection 

13 4096 IDEPIX_CIRRUS_AMBIGUOUS 
Cirrus clouds, or clouds where the 

detection level is uncertain 

14 8192 IDEPIX_CLEAR_LAND Clear land pixels 

15 16384 IDEPIX_CLEAR_WATER Clear water pixels 

16 32768 IDEPIX_WATER Water pixels 

17 65536 IDEPIX_BRIGHTWHITE ‘Brightwhite' pixels 

18 131072 IDEPIX_VEG_RISK Pixels with vegetation risk 

19 262144 IDEPIX_MOUNTAIN_SHADOW Pixel is affected by mountain shadow 

20 524288 IDEPIX_POTENTIAL_SHADOW Potentially a cloud shadow pixel 

21 1048576 IDEPIX_CLUSTERED_CLOUD_SHADOW 
Cloud shadow identified by clustering 

algorithm 

 

In IdePix, bits corresponding to values 2, 4, 2048 were considered “cloud”, whereas all others were 

considered “non-cloud”. 
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2.6 InterSSIM (Sinergise) 
The ̀ InterSSIM` cloud detection algorithm is a multi-temporal extension of the ̀ s2cloudless` algorithm3 

based on a gradient boosting algorithm (LightGBM)4, which was as well trained on a training dataset 

with global coverage. Unlike `s2cloudless`, the `InterSSIM` algorithm takes temporal and spatial 

context into account. The input features are: Sentinel-2 reflectance values of the same 10 bands from 

the target time frame; spatially averaged reflectance values for the target frame using a Gaussian filter; 

minimum and mean reflectance values of all available time frames at a given spatial coordinate; 

maximum and mean differences of reflectance values between the target frame and any other time 

frame; and maximum, mean, and standard deviation of structural similarity indices computed between 

the target and every other time frame. Additionally, if not explicitly provided, `s2cloudless` 

probabilities for each timeframe are computed from reflectance values and used as inputs as well. The 

algorithm has been integrated into [eo-learn]5 Python library published under the MIT License on 

[GitHub]6. The output of the algorithm is a cloud probability map for the target timeframe, which can 

be converted into a cloud mask with the same procedure as in the case of `s2cloudless` algorithm. 

The ` InterSSIM` cloud masks were provided in a binary mode: 1 – “cloud” and 0 – “non-cloud”. 

2.7 LaSRC (NASA / University of Maryland) 
The Land Surface Reflectance Code (LaSRC) is a generic atmospheric correction algorithm aimed at 

removing atmospheric effects associated with optical satellite imagery acquisitions (Doxani et al., 

2018; Vermote et al., 2016). The code is based on the inversion of the 6SV radiative transfer code 

(Kotchenova et al., 2006; Vermote et al., 1997). LaSRC has been used extensively for multiple space-

borne remote sensing instruments, such as MODIS (Vermote & Kotchenova, 2008), Visible Infrared 

Imaging Radiometer Suite (VIIRS) (Vermote et al., 2014), OLI (Vermote et al., 2016) and MSI (Doxani et 

al., 2018). LaSRC is the main algorithm for atmospheric correction of Landsat 8/OLI and Senitnel-2/MSI 

data for NASA’s HLS product (Claverie et al., 2018), and has been extensively validated within the 

Atmospheric Correction Inter-comparison eXercise (ACIX) (Doxani et al., 2018). 

Within the atmospheric correction process, LaSRC generates several quality assurance (QA) layers, 

including a cloud mask (Skakun et al., 2019; Vermote et al., 2016). The main metric for deriving a cloud 

mask is a per-pixel inversion residual error, which shows the goodness of aerosol optical thickness 

(AOT) estimation process: 

𝑟𝑣𝑖𝑠_𝑠𝑤𝑖𝑟 = √
1

3
((𝜌S

cb − 𝑟cb,r𝜌S
r)
2
+ (𝜌S

b − 𝑟b,r𝜌S
r)
2
+ (𝜌S

sw − 𝑟sw,𝑟𝜌S
r)
2
),,    (1) 

where 𝜌S
cb, 𝜌S

b, 𝜌S
r and 𝜌S

sw are the surface reflectance values in coastal blue (~0.440 µm), blue (~0.480 

µm), red (~0.660 µm) and shortwave infrared bands (~2.1 µm), respectively (Landsat 8 bands 1, 2, 4 

and 7 or Sentinel-2 bands 1, 2, 4 and 12), derived using AOT inverted from the red and blue; and 𝑟cb,r, 

𝑟b,r and 𝑟sw,𝑟 are ratios between red and blue and SWIR bands derived from MODIS and Multi-angle 

Imaging Spectroradiometer (MISR) and downscaled at Landsat 8 spatial resolution (Vermote et al., 

2016). This residual metric (Eq. 1) is the main criterion for detecting thick clouds, since the latter will 

either prevent the AOT inversion process from convergence, or will drive the residual metric to high 

values. For both Landsat 8 and Sentinel-2, we used a threshold of 0.05 for the residual to identify 

 
3 https://medium.com/sentinel-hub/on-cloud-detection-with-multi-temporal-data-f64f9b8d59e5  
4 https://lightgbm.readthedocs.io/en/latest/  
5 https://eo-learn.readthedocs.io/en/latest/  
6 https://github.com/sentinel-hub/eo-learn  

https://medium.com/sentinel-hub/on-cloud-detection-with-multi-temporal-data-f64f9b8d59e5
https://lightgbm.readthedocs.io/en/latest/
https://eo-learn.readthedocs.io/en/latest/
https://github.com/sentinel-hub/eo-learn


pg. 19 
 

cloudy pixels. Pixels adjacent to clouds within 5 pixels are separately masked as being “adjacent to 

clouds”. For S2, a conservative threshold of 0.003 (reflectance units) was also used for the cirrus band. 

Therefore, for LaSRC pixels identified as cloud or adjacent were used as “cloud”, whereas all others 

were used as “non-cloud”. In CMIX, LaSRC version 3.5.5 was used. 

 

2.8 MAJA (CNES/CESBIO) 
MAJA is a comprehensive L2A processor applicable to optical Earth observation satellites, which 

perform repetitive observations at similar viewing angles. It is developed by CNES with CS-SI as a 

contractor since 2006; its methods were designed by the CESBIO laboratory, and it includes a few 

modules contributed by DLR. Its particularity is to use multi-temporal methods for several aspects of 

its processing. MAJA software is freely accessible to anyone and accessible as an open source software. 

MAJA’s cloud masks are produced operationally on some zones of the world and can be downloaded 

freely from https://theia.cnes.fr .An on-demand processing  is also accessible using the maja-peps 

service : https://github.com/olivierhagolle/maja_peps. 

MAJA's cloud and shadow detection methods include several tests, which use the multi-spectral and 

multi-temporal properties of surfaces, clouds, and shadows to classify the different types of pixels. 

They are described in detail in (Hagolle et al., 2010) and (Hagolle et al., 2017). The Sentinel-2 cloud 

masks obtained with MAJA are dilated using a buffer of 240 m, firstly to account for the parallax effects 

due to differences in observation angles between spectral bands, but also to account for the adjacency 

effects of clouds and for their fuzzy borders. MAJA aims at a good reliability for surface reflectance 

monitoring, its tests and threshold are therefore optimized to minimize cloud or cloud shadow 

omission, but still with a low commission error.  

In CMIX, the cloud masks for Sentinel-2 were computed at 240 m resolution, to optimize the 

computation time, but this can prevent MAJA from detecting very small clouds. Since then, thanks to 

computing performances optimization, it is now possible to compute the clouds and shadows masks 

at 120 m with the same duration as for CMIX experiment, which should further improve MAJA's 

performances.  

Due to the use of multi-temporal criteria, MAJA processes time series and for each single reference 

images, at least 10 images have to be processed by our team. Moreover, some reference images were 

acquired in the early phase of Sentinel-2A, with a revisit of 10 to 20 days, compared to the nominal 

revisit of 5 days for the Sentinel System. In order to limit the number of images to process specifically 

for CMIX and provide results in the nominal condition of the mission, we did not process the images 

acquired before July 2017. 

MAJA has been intensively validated and some of its validation data sets (Baetens et al., 2019) were 

used in the CMIX experiment. 

MAJA’s values “all clouds” (corresponding to bit 1) and “thinnest clouds” (corresponding to bit 4) were 

used as “cloud” class, whereas all others were used as a “non-cloud” class. Cloud shadows have 

therefore been included in the non-cloud class. 

 

 

https://theia.cnes.fr/
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2.9 S2cloudless (Sinergise) 
The `s2cloudless` is an automated cloud-detection algorithm7 for Sentinel-2 imagery based on a 

gradient boosting algorithm LightGBM (https://lightgbm.readthedocs.io/en/latest/). The model was 

trained on a large training dataset with a global coverage. The algorithm is mono-temporal, does not 

take into account any spatial context, and can be executed at any resolution. The `s2cloudless` 

algorithm can, unlike many other algorithms, be executed also on averaged Sentinel-2 reflectance 

values over arbitrary user-defined geometries and still provide meaningful results. The input features 

are Sentinel-2 reflectance values of the following 10 bands: B01, B02, B04, B05, B08, B8A, B09, B10, 

B11, B12. The output of the algorithm is a cloud probability map. Users of the algorithm can convert 

the cloud probability map to a cloud mask by setting a threshold on the cloud probability map. The 

recommended value for the threshold is 0.4. Users can optionally apply additional morphological 

operations during the conversion of the cloud probability map to the cloud mask. These operations are 

as follows: convolution of the probability map with a disk and dilation of the binary cloud mask with a 

disk. We recommend convolving cloud probability maps at 10 m (160 m) resolution with a disk with a 

radius of 22 (2) px and dilate cloud masks with a disk with radius 11 (1) px. The algorithm is published 

under the MIT License on [GitHub]8. [Sentinel Hub]9 and [Google Earth Engine]10 provide precomputed 

`s2cloudless` cloud probability maps and masks to their users. 

The `s2cloudless` cloud masks were provided in a binary mode: 1 – cloud and 0 – non-cloud. 

2.10 Sen2cor (ESA / Telespazio France / DLR) 
Sen2Cor is a processor for Sentinel-2 Level 2A product generation; it performs the atmospheric 

correction of the Top-Of-Atmosphere (TOA) Level 1C input data. It is composed of the two main 

modules: an atmospheric correction module (originally based on ATCOR from DLR) and a scene 

classification module (designed by Telespazio France) that provides a “scene classification map”, which 

is used internally in Sen2Cor’s atmospheric correction module to distinguish between cloudy, clear and 

water pixels. 

Sen2Cor v.2.8 algorithm is used by the European Space Agency to generate the official Sentinel-2 Level-

2A products within the Sentinel-2 ground segment. 

Sen2Cor v2.8 software can be found on this page: https://step.esa.int/main/third-party-plugins-

2/sen2cor/ , the code written in Python is open source. 

 

Description of the algorithm11 

Sen2Cor v2.8 cloud screening algorithm uses the reflective properties of scene features (L1C TOA 

reflectances). Potential cloudy pixels undergo a sequence of filtering based on spectral bands 

thresholds, ratios, and indexes computations (NDSI, NDVI). The result of each pixel test is a cloud 

probability (ranging from 0 for high confidence clear sky to 1 for high confidence cloudy). After each 

step, the cloud probability of a potentially cloudy pixel is updated by multiplying the current pixel cloud 

probability by the result of the test. Finally, the cloud probability of a pixel is the product of all the 

 
7 https://medium.com/sentinel-hub/improving-cloud-detection-with-machine-learning-
c09dc5d7cf13?source=collection_category---4------3-----------------------  
8 https://github.com/sentinel-hub/sentinel2-cloud-detector  
9 https://medium.com/sentinel-hub/cloud-masks-at-your-service-6e5b2cb2ce8a  
10 https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_CLOUD_PROBABILITY  
11 https://sentinels.copernicus.eu/documents/247904/446933/Sentinel-2-Level-2A-Algorithm-Theoretical-
Basis-Document-ATBD.pdf 

https://step.esa.int/main/third-party-plugins-2/sen2cor/
https://step.esa.int/main/third-party-plugins-2/sen2cor/
https://medium.com/sentinel-hub/improving-cloud-detection-with-machine-learning-c09dc5d7cf13?source=collection_category---4------3-----------------------
https://medium.com/sentinel-hub/improving-cloud-detection-with-machine-learning-c09dc5d7cf13?source=collection_category---4------3-----------------------
https://github.com/sentinel-hub/sentinel2-cloud-detector
https://medium.com/sentinel-hub/cloud-masks-at-your-service-6e5b2cb2ce8a
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_CLOUD_PROBABILITY


pg. 21 
 

individual tests. The sequential filtering stops when a test result set the pixel cloud probability to zero. 

The pixel is then considered to be high confidence clear sky in the cloud probability map and the pixel 

is classified to its corresponding class in the classification map (Figure 2). Each part of the different 

processing steps shown in Figure 2 are detailed in Sen2Cor ATBD available online. 

 

Figure 2: Sen2Cor classification 

 

The cloud shadow algorithm method is a combination of: 

a) Radiometric approach: Dark areas and potential cloud shadows are identified by their spectral 

signature using S2 spectral bands B2, B3, B4, B8, B11 and B12.  

b) Geometric approach: A mask of probable cloud shadows is derived using the final cloud mask, 

sun position and an a-priori distribution of top-cloud height 

c) Final step: The final cloud shadow mask is obtained by multiplying the result of the radiometric 

branch by the result of the geometric branch. The result is a probabilistic cloud shadow mask.  

SCL mask usage for CMIX 

Sen2Cor v.2.8 has not been modified or particularly trained to fit the CMIX datasets definition for 

clouds. Non-cloud or shadow dilation is applied neither proposed, despite a prototype Sen2Cor version 

foresees this dilation for users interested in “clean” pixels.  

L2A products directories have been cleaned to reduce the L2A product size and only the SCL mask is 

kept in the “../IMG_DATA/R20m” directory.  

We provide hereafter some basic recommendations for SCL mask usage within CMIX:  

• For clear pixels land application (e.g. vegetation/land monitoring) we usually suggest to use 

classes “vegetation” and “not_vegetated”. Water class can be self-understood, it includes 

marine and inland waters.  

• For the cloud percentage computed as a unique figure for L2A product, the combination of 

“cloud medium probability”, “cloud high probability” and “thin_cirrus” is used to derive the 
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L2A global cloud percentage. L2A surface reflectance and subsequent bio-geophysical 

parameters are expected to be impacted by cloud presence.  

• Considering the distinction of “ambiguous case”, the combination of “cloud medium 

probability” and “thin_cirrus” maybe more appropriate to classify those semi-transparent 

clouds. With some expected commission error as cloud medium probability could also catch 

some opaque clouds (e.g. cloud borders). 

The following values are used for “cloud” class: Cloud medium probability (8), Cloud high probability 

(9), Thin cirrus (10). The following values are used for “non-cloud” class: Invalid (0), Saturated or 

defective (1), Dark area pixel (2), Cloud shadow (3), Vegetation (4), Not vegetated (5), Water (6), 

Unclassified (7), and Snow (11).  

Auxiliary Data 

Sen2Cor uses:  

• a Digital Elevation Model (DEM): SRTM v4 or PlanetDEM  

• ESA CCI Maps a priori information  

o CCI-LC Water Bodies Map (5 years) at 150 m  

o Land Cover Map v.2.0.7 (2015) at 300 m  

▪ urban class = 190  

▪ bare classes = 200, 201, 202  

o CCI-LC Snow Condition (7-day) at 500 m  

• a snow climatology included in the installation package.  
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3 Validation 
This section includes a detailed description of the validation datasets and the validation methods, and 

the results will be presented. During the exercise it became obvious that the validation results not only 

depend on the performance of the algorithms, but the performance of an algorithm also varies with 

the validation datasets. Therefore, a good insight into the validation datasets and their characteristics 

is extremely valuable for the interpretation of the results. 

3.1 Validation datasets 
The validation performed in the CMIX was based on existing Sentinel-2 and Landsat 8 cloud reference 

datasets. These datasets have been collected/generated for different purposes using different 

methodologies and cloud class nomenclatures. Some of the datasets are single-pixel collections (i.e. 

where a minimum mapping unit is a pixel), while others are the collections of connected pixel areas 

(polygons). In most of the datasets, pixels were classified manually; in others, the labelling process was 

semi-automatic with extensive manual checking afterwards. 

The following Table 4 gives a brief overview of the used datasets and the different methodologies. 

Table 4: Validation datasets overview 

Dataset Spatial 
domain 

Level of 
automatization 

Purpose Thematic 
depth 

Satelli
tes 

Spatial 
resolutio
n 

# 
scenes 

Data 
Availability 

Hollstein Pixels 
collected by 
polygons 
(hundreds to 
thousands of 
pixels per 
polygon) 

Manually 
selected and 
classified by an 
expert 

Training 
and 
Validation 

Shallow  
(6 classes) 

S2 Polygons 
(20 m) 

59 https://gite
xt.gfz-
potsdam.de
/EnMAP/se
ntinel2_ma
nual_classif
ication_clo
uds 

Pixbox Single pixels Manually 
selected and 
classified by an 
expert 

Validation Very high  
(10 and 
more 
categories 
with 
multiple 
classes) 

S2, L8 S2: 10 m 
L8: 30 m 

S2: 29 
L8: 11 

https://zen
odo.org/rec
ord/503699
1#.YNrhAO
hMGUk 
https://zen
odo.org/rec
ord/504027
1#.YNrvluh
MGUl 

L8 
Biome 

Classification 
of full 
Landsat 8 
scenes 

Manually 
classified by an 
expert 

Training 
and 
Validation 

Shallow 
(4 classes) 

L8 30 m L8: 96 https://lan
dsat.usgs.g
ov/landsat-
8-cloud-
cover-
assessment
-validation-
data 

CESBIO Pixel 
classification 
of a 

Classification 
using an 
iterative and 
supervised 

Validation Shallow  
(6 classes) 

S2 60 m S2: 30 https://zen
odo.org/rec
ord/146096

https://gitext.gfz-potsdam.de/EnMAP/sentinel2_manual_classification_clouds
https://gitext.gfz-potsdam.de/EnMAP/sentinel2_manual_classification_clouds
https://gitext.gfz-potsdam.de/EnMAP/sentinel2_manual_classification_clouds
https://gitext.gfz-potsdam.de/EnMAP/sentinel2_manual_classification_clouds
https://gitext.gfz-potsdam.de/EnMAP/sentinel2_manual_classification_clouds
https://gitext.gfz-potsdam.de/EnMAP/sentinel2_manual_classification_clouds
https://gitext.gfz-potsdam.de/EnMAP/sentinel2_manual_classification_clouds
https://gitext.gfz-potsdam.de/EnMAP/sentinel2_manual_classification_clouds
https://zenodo.org/record/5036991#.YNrhAOhMGUk
https://zenodo.org/record/5036991#.YNrhAOhMGUk
https://zenodo.org/record/5036991#.YNrhAOhMGUk
https://zenodo.org/record/5036991#.YNrhAOhMGUk
https://zenodo.org/record/5036991#.YNrhAOhMGUk
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complete 
scene 
 

active learning 
method 

1#.YFn3Ui2
z00o 

GSFC  Pixels 
collected by 
polygons 
(hundreds to 
thousands of 
pixels per 
polygon) 

Manually 
selected and 
classified by an 
expert assisted 
by ground-
based images 
of the sky 

Validation Shallow 
(4 classes) 

L8, S2 Polygons 
(in vector 
format) 

L8: 6 
S2: 28 

https://dat
a.mendeley
.com/datas
ets/r7tnvx7
d9g/1 

 

 

3.1.1 S2 Hollstein dataset (Hollstein et al. 2016) 
The ”S2 Hollstein dataset” is a database of manually labeled Sentinel-2A spectra, which were used in 

the paper by (Hollstein et al., 2016). The database is currently hosted by the Environmental Mapping 

and Analysis Program (EnMAP) of Deutsches GeoForschungsZentrum GFZ. The data is available from 

the GFZ Git12. The collection was done based on the early Sentinel-2 products. These products 

consisted of a 290 km image divided into 100 km granules in UTM/WGS84 projection.   

By means of different spectral tools, granule pixels were selected and classified into one of the 

following six classes: 

Class Coverage 

cloud opaque clouds 

cirrus cirrus and vapor trails 

snow snow and ice 

shadow shadows from clouds, cirrus, mountains, buildings, etc 

water lakes, rivers, seas 

clear-sky remaining: crops, mountains, urban, etc 

Spectral tools include false-color composites, image enhancements and graphical visualization of 

spectra. The aim is to create highly heterogeneous classes with a balanced number of pixels. 

Figure 3 shows the coast of Fiji in two different composites: (a) bands 4/3/2 and (b) bands 8a/3/2. 

Colored polygons represent four different classes. Cyan, yellow, dark blue and green colors stand for 

water, shadow, cloud and clear-sky pixels 

 
12 https://gitext.gfz-potsdam.de/EnMAP/sentinel2_manual_classification_clouds 

https://gitext.gfz-potsdam.de/EnMAP/sentinel2_manual_classification_clouds
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Figure 3: Classification example from S2 Hollstein dataset. 

The dataset consists of a total of N=5647725 pixels. Pixel information is saved into different tables in 

the HDF5 file.  

Relative to Sentinel-2 spatial and spectral resolutions: 

• band associates a band position with its label 

• further band descriptions can be found in  

o bandwidth_nm,  

o central_wavelength_nm and  

o spatial_sampling_m  

Relative to the classes:  

• classes (1xN table) includes the class id to which each pixel in the dataset is associated 

• class_ids describes the id associated to each class that appears in class_names  

Relative to the spectra:  

• spectra (13xN table) collects the spectral values of each pixel. Sentinel-2 instrument samples 

13 spectral bands.  
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Relative to the image metadata:  

• latitude and longitude gather pixel coordinates 

• each pixel is located in a granule_id, where several granules correspond to an image associated 

with a product_id  

• the same product will share the sensing date -date-, four different sampling angles -

sun_azimuth_angle, sun_zenith_angle, viewing_azimuth_angle, viewing_zenith_angle- and 

the geographical location -continent and country. 

 

Preparation of the dataset for the CMIX 

The collection of the S2 Hollstein dataset was done when only the old (multi-granule) products were 

distributed by ESA. The old product name includes sensing and creation date, as well as the relative 

orbit number of the image are stored inside the HDF5 database. Additionally, the granule IDs are 

stored. By using the stored information, we tried to identify the correct newly formatted (granule 

based) Sentinel-2 products. 60 products have been identified of which 59 were available from the 

Copernicus Open Access Hub13. These products have been provided to the participants. 

Somehow, there is a varying number of products given for the collection of the dataset. On multiple 

grey resources throughout the internet a number of 108 products is listed, where in the GFZ Git 

repository14 a list with 98 products is given. As stated above, only 60 individual products have been 

identified within the database.  

3.1.2 S2/L8 Pixbox dataset 
The overarching idea of Pixbox is a quantitative assessment of the quality of a pixel classification which 

is the result of an automated algorithm/procedure. Pixel classification is defined as assigning a certain 

number of attributes to an image pixel, such as cloud, clear sky, water, land, inland water, flooded, 

snow etc. Such pixel classification attributes are typically used to further guide higher level processing.  

The Pixbox method comprises 2 elements:  

• A Reference Data Set: trained experienced expert(s) manually classify pixels of an image 

sensor into a pre-defined detailed set of classes. These are typically different cloud 

transparencies, cloud shadow, condition of underlying surface (“semi-transparent clouds over 

snow”, “clouds over bright scattering water”). The collected dataset includes several 10-

thousands of pixels because it has to be representative for all classes, and for various 

observation and environmental conditions, such as climate zones, sun illumination etc. Quality 

control of the collected pixels is important in order to detect misclassifications and systematic 

errors. An auto-associative neural network is trained for this purpose.  

• Analysis: the analysis compares the reference dataset with one (or more) automated 

classification procedures. This includes at least a confusion matrix of the directly comparable 

classes. However, the reference dataset includes a very fine granularity of classes, which is 

usually not provided by the automated procedure. This allows to detect systematic 

weaknesses of the automated procedure and to formulate recommendations for 

improvements.  

Figure 4 shows the Pixbox user interface. The expert sets the classes for multiple pixel characteristic 

categories (surface properties) and starts collecting matching pixels, then classes are changed, and 

 
13 https://scihub.copernicus.eu/ 
14 https://gitext.gfz-potsdam.de/EnMAP/sentinel2_manual_classification_clouds/-
/blob/master/code/list_scenes.py 

https://scihub.copernicus.eu/
https://gitext.gfz-potsdam.de/EnMAP/sentinel2_manual_classification_clouds/-/blob/master/code/list_scenes.py
https://gitext.gfz-potsdam.de/EnMAP/sentinel2_manual_classification_clouds/-/blob/master/code/list_scenes.py
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new pixels are collected, and so on. Based on the multiple categories, and classes per category, a very 

high thematic detail is reached. 

 

Figure 4: Pixbox user interface 

For CMIX a subset of two pre-existing Pixbox pixel collections were used. Details are given in the 

following sections. 

Preparation 

No data preparation was needed as all products are stored with the database during collection and 

are archived. These archived products have been provided to the participants. 

3.1.2.1 S2 Pixbox dataset 

The Sentinel-2 pixel collection contains 17,351 pixels manually collected from 29 Sentinel-2 A & B Level 

1C products. This collection is a subset of a collection made in 2018 containing 54,000 pixels from 87 

products. The used dataset is spatially, temporally, and thematically evenly distributed. Figure 5 and 

Figure 6 give a small example of the thematic and spatial distribution of the dataset. Figure 7 and Figure 

8 show in detail the collected categories and classes of the dataset. 
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Figure 5: Example of thematic categories and classes of S2 Pixbox collection 

 

Figure 6: Spatial distribution of S2 products used for Pixbox collection 
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Figure 7: Categories and classes of the S2 Pixbox collection - part 1 

 

Figure 8: Categories and classes of the S2 Pixbox collection - part 2 

ID Name ID Name ID Name ID Name ID Name ID Name

0 None 0 None 0 None 0 None 0 None 0 None

1 None of the classes 1 None of the classes 1 None of the classes1 None of the classes 1 None of the classes 1 None of the classes

2 Clear 2 Stratus 2 low (<3km) 2 Topographic shadow (incl tree & buildings) 2 Glint 2 Bright turbid water (blue or brown)

3 Opaque 3 Cumulus 3 middle (3-6km) 3 Cloud shadow 3 Cocolithophorides

4 Semi-transparent cloud 4 Convective Cloud 4 high (>6km) 4 Shadow above cloud 4 Floating Cyanobacteria bloom

5 Thick semi-transparent cloud 5 Cirrus 5 Floating vegetation

6 Average density semi-transparent cloud 6 Dark water

7 Thin semi-transparent cloud 7 Wave breaking

8 Spatially mixed cloud 8 Algae

13

14

15

16

17

WATER_BODY_CHARACTERISTICS_IDCLOUD_CHARACTERISTICS_ID CLOUD_TYPE_ID CLOUD_HEIGHT_ID SHADOW_ID GLINT_ID

ID Name ID Name ID Name ID Name ID Name ID Name ID Name ID Name ID Name

0 None 0 None 0 None 0 None 0 None 0 None 0 Evergreen Needleleaf Forest 0 Spring 0 Day

1 None of the classes 1 None of the classes 1 None of the classes 1 None of the classes 1 None of the classes 1 None of the classes 1 Barren/Desert 1 Summer 1 Night

2 Land 2 Snow 2 Desert dust 2 Oversaturation 2 Benthic sediment 2 A:Tropical 2 Permanent Snow/Ice 2 Autumn 2 Twilight

3 Mountain 3 Ice 3 Smoke 3 Benthic vegetation 3 B:Dry 3 Crop/Natural Veg, Mosaic 3 Winter

4 Urban 4 Floating sea ice 4 Volcanic eruption 4 Optically deep 4 C:Temperate 4 Urban

5 Agriculture 5 Brash sea ice 5 Dust storm 5 D:Cold 5 Cropland

6 Desert 6 Sea ice edge 6 Smog 6 E:Polar 6 Permenant Wetland

7 Dry/Salt Lake 7 Fractured sea ice 7 Grassland

8 Intertidal Area 8 Flooded sea ice 8 Water Bodies

9 Spatially mixed land/water 9 Fast sea ice 9 Savanna

10 Water 10 Pack sea ice 10 Open Shrubland

11 Lake 11 Closed Shrubland

12 River 12 Mixed Deciduous Forest

13 Costal 13 Deciduous Broadleaf Forest

14 Open ocean 14 Deciduous Needleleaf Forest

15 Spatially mixed water/snow-ice 15 Evergreen Broadleaf Forest

16 Snow-ice 16 Woody Savanna

17 Spatially mixed land/snow-ice 17 Tundra

SURFACE_TYPE_ID SEASON_ID DAY_TIME_IDSURFACE_ID ICE_TYPE_ID AEROSOL_TYPE_ID OVERSATURATION_ID SHALLOWNESS_ID CLIMATE_ZONE_ID 
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3.1.2.2 L8 PixBox dataset 

The Landsat 8 pixel collection contains 18,830 pixels manually collected from 11 Landsat-8 Level 1 

products. This collection is a subset of a collection made in 2015 containing 37,000 pixels from 21 

products. The used dataset is temporally and thematically evenly distributed. Spatially it is focused on 

coastal areas, mainly in Europe. Figure 9 and Figure 10 give a small example of the thematic and spatial 

distribution of the dataset. Figure 11 and Figure 12 show in detail the collected categories and classes 

of the dataset. 

 

Figure 9: Example of thematic categories and classes of L8 Pixbox collection 

 

Figure 10: Spatial distribution of L8 products used for Pixbox collection 
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Figure 11: Categories and classes of the L8 Pixbox collection - part 1 

 

 

Figure 12: Categories and classes of the L8 Pixbox collection - part 2 

WATER_BODY_TYPE_ID

ID Name ID Name ID Name ID Name ID Name ID

0 None 0 None 0 None 0 None 0 None 0 None

1 None of the classes 1 None of the classes1 None of the classes 1 None of the classes 1 None of the classes 1 None of the classes

2 Stratus 2 low (<3km) 2 Cloud shadow 2 Glint 2 Bright turbid water (blue or brown) 2 Snow

3 Cumulus 3 middle (3-6km) 3 Cocolithophorides 3 Ice

4 Convective Cloud 4 high (>6km) 4 Floating Cyanobacteria bloom 4 Bright turbid water (blue or brown)

5 Cirrus 5 Floating vegetation 5 Cocolithophorides

6 Dark water 6 Floating Cyanobacteria bloom

7 Wave breaking 7 Floating vegetation

8 Algae 8 Dark water

CLOUD_CHARACTERISTICS_ID CLOUD_HEIGHT_ID SHADOW_ID GLINT_ID WATER_BODY_CHARACTERISTICS_ID

ID Name ID Name ID Name ID Name ID Name ID Name ID Name

0 None 0 None 0 None 0 None 0 Evergreen Needleleaf Forest 0 Spring 0 Day

1 None of the classes 1 None of the classes 1 None of the classes 1 None of the classes 1 Barren/Desert 1 Summer 1 Night

2 Totally Cloudy 2 Turbid atmosphere: Desert dust 2 Benthic sediment 2 A:Tropical 2 Permanent Snow/Ice 2 Autumn 2 Twilight

3 Turbid atmosphere: Semi-transparent cloud 3 Turbid atmosphere: Smoke 3 Benthic vegetation 3 B:Dry 3 Crop/Natural Veg, Mosaic 3 Winter

4 Clear sky water 4 Turbid atmosphere: Volcanic eruption 4 Optically deep 4 C:Temperate 4 Urban

5 Clear sky land 5 Turbid atmosphere: Other 5 D:Cold 5 Cropland

6 Clear sky snow_ice 6 E:Polar 6 Permenant Wetland

7 Non-clear sky water 7 Grassland

8 Non-clear sky land 8 Water Bodies

9 Non-clear sky snow_ice 9 Savanna

10 Spatially mixed cloud/land 10 Open Shrubland

11 Spatially mixed cloud/water 11 Closed Shrubland

12 Spatially mixed cloud/snow_ice 12 Mixed Deciduous Forest

13 Spatially mixed snow_ice/land 13 Deciduous Broadleaf Forest

14 Spatially mixed snow_ice/water 14 Deciduous Needleleaf Forest

15 Spatially mixed land/water 15 Evergreen Broadleaf Forest

16 Woody Savanna

17 Tundra

SURFACE_TYPE_ID SEASON_ID DAY_TIME_IDPIXEL_SURFACE_TYPE_ID ATMOSPHERIC_PROPERTIES_ID SHALLOWNESS_ID CLIMATE_ZONE_ID 
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3.1.3 S2/L8 GSFC 
Cloud reference data were collected over the NASA GSFC (Figure 13). The area is quite heterogenous 

with major land cover classes being forest (~52%) and impervious surfaces (31%) with patches of 

natural vegetation and cultivated areas (totaling 17%). NASA GSFC also has an AERONET station 

(Holben et al., 1998), which provides aerosol optical thickness (AOT) and water vapor, and one of the 

sites used in ACIX-I/ACIX-II. Ground-based images of the sky were collected from 2017 through 2019 

using a smartphone camera with a fisheye lens. These data were collected manually during the Landsat 

8 and Sentinel-2 overpasses. Reference data were collected for 6 Landsat 8 and 28 Sentinel-2 scenes. 

The objective was to capture various cloud conditions (Figure 14) as well as seasonal cycles. 

 

 

Figure 13: Overview of the area over the NASA Goddard Space Flight Center (GSFC) with the corresponding land cover map 
(b). Left panel (a) shows a Sentinel-2A image acquired on July 10, 2020. Shown is the true color combination of surface 

reflectance values in spectral bands B04 (red), B03 (green) and B02 (blue) derived from LaSRC (Vermote et al., 2016) and 
stretched from 0 to 0.15 (in reflectance units) 

 

Figure 14: Ground-based images of the sky under various cloud conditions. The dark object at the top of the images was 
used to mask the Sun and reduce sun glare on the camera lens 
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Ground-based images were used to assist with manual labelling of clouds in Landsat 8 and Sentinel-2 

imagery. In order to facilitate the labeling process, some of the ground-based images were manually 

geo-referenced to satellite imagery by manually selecting control points (CPs) using the shape of clouds 

and referencing a ground-based image to the satellite one. On average, 20-30 CPs were needed for a 

scene, and a second order polynomial function was used to transform the ground-based photo to the 

satellite one. For completely clear or overcast scenes, geo-referencing of ground-based photos was 

not necessary. For clear days or days with minimal cloud cover, we also checked estimated AOT values 

from the Aeronet station in order to not mislabel potential thin clouds. 

Labeling of satellite imagery was manually performed into cloud, thin cloud, shadows and clear classes. 

To facilitate the labelling process, Sentinel-2 and Landsat 8 images were presented in various spectral 

combination including true color (red-green-blue) and false color (NIR-red-green, SWIR1-NIR-red), and 

using a cirrus band (at 1.38 µm). When defining cloud polygons, the boundary between clouds and 

clear classes was omitted (~1-2 pixels). There are several reasons for that. First, it is practically 

impossible to accurately define the boundary, especially at medium spatial resolution (10-30 m), which 

would contain a lot of “mixed” pixels. Second, uncertainty of cloud boundaries substantially increases 

for Sentinel-2 images, because of a parallax (Skakun et al., 2018), which introduces a shift of clouds in 

different spectral bands. MSI is designed in such a way that detectors, responsible for different spectral 

bands, are shifted against each other (Gascon et al., 2017) and therefore acquire images at slightly 

different angles, which introduces a parallax. That parallax is being corrected during image pre-

processing, so images acquired at different wavelength will be aligned; however, these pre-processing 

routines do not correct shifts for moving and/or high-altitude objects. 

Figure 15 shows examples of labeling Sentinel-2A scenes into reference classes. The resulting reference 

data are provided in the form of vector polygons that can be rasterized for the target spatial resolution 

of the cloud masking algorithm. The detailed description of the GSFC dataset is given in Skakun et al. 

(2021). 
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Figure 15: True color combination of TOA reflectance (B04-B03-B02 stretched from 0 to 0.25) of Sentinel-2A image acquired 
on August 9, 2018 (a) and September 23, 2017 (b). Corresponding cirrus bands (B10) stretched from 0.005 to 0.020 (c) and 
(d). Geo-referenced ground-based image of the sky during Sentinel-2A overpass (e) and (f). Reference clouds masks (g) and 

(h). From Skakun et al. (2021) 
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3.1.4 L8 Biome 
The “L8 Biome” cloud validation dataset15 consists of 96 Landsat 8 scenes (Figure 16), which were 

selected using a semi-random sampling by biomes (Foga et al., 2017). These biomes included barren, 

forest, grass/crops, shrubland, snow/ice, urban, water and wetlands. For each biome, 12 Landsat 8 

scenes were selected, and each scene was manually classified into the following classes: clear, thin 

cloud, cloud, and cloud shadow. It should be noted that no specific threshold was used to detect thin 

clouds, which were primarily determined by the analyst. Also, the cloud shadow class in the validation 

dataset was not provided for all the Landsat 8 scenes. The detailed description of the L8Biome dataset 

is given in Foga et al. (2017). 

 

Figure 16: Global distribution of the 96 unique Landsat 8 Cloud Cover Assessment (CCA) scenes, sorted by International 
Geosphere-Biosphere Programme (IGBP) biome. Twelve scenes were selected for each of the eight biomes. From Foga et al. 

(2017) 

 
15L8 Biome Cloud Validation Masks. (2016). U.S. Geological Survey, data release. [Online]. Available: 
http://doi.org/10.5066/F7251GDH. 
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Figure 17: Left: Landsat 8 Operational Land Imager (OLI) scene used for cloud and cloud shadow mask digitization, acquired 
over WRS-2 Path 229, Row 57 on 21 May 2014, displayed as a false color composite (bands 6, 5, and 4, respectively). Right: 

The final “L8 Biome” cloud mask product. From Foga et al. (2017) 

Several experimental scenarios were run with the L8Biome dataset, including all validation images 

(with some processors such as ATCOR and LaSRC not processing all of the images because of polar 

coordinates and snow cover); removing snow scenes from the validation datasets, so the algorithms 

will be compared against the same set of scenes/pixels; and, finally, removing thin clouds from the 

reference dataset, so the effect of thin clouds (which are more subjective in identification compared 

to thick clouds in L8Biome) can be explored. 

 

3.1.5 S2 CESBIO dataset 
The “Sentinel-2 reference cloud masks generated by an active learning method” (Baetens & Hagolle, 

2018), from herein after called “S2 CESBIO dataset”, provides a reference cloud mask data set for 38 

Sentinel-2 scenes. 

These reference masks were created with the ALCD tool, developed by Louis Baetens, under the 

direction of Olivier Hagolle at CESBIO/CNES (Baetens et al., 2019), to validate the cloud masks 

generated by the MAJA software (Hagolle et al., 2010). 
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Figure 18: one of the CESBIO reference images with the contours of the masks overlaid (green: clouds, yellow: cloud 
shadows, pink: snow, and blue: water). 

The active learning method consists in a heavily manually supervised classification method. The cloud 

expert selects and labels a large number of pixels, uses them to generate a first classification using a  

random forest classifier. This classification is manually controlled by the expert, and new pixels are 

added to the learning data base either to correct errors in the initial classification, or to provide 

additional information where the algorithm confidence is low. A new classification is then performed, 

and this sequence is iterated usually four to five times until no error is spotted by the expert. At each 

step a proportion of the learning data base is not used for the learning, but to obtain a confusion matrix 

to control the results.   

The input features for the active learning classification, as well as for the the labelling by the expert, 

are all the bands of the image to classify, and a reference cloud free image acquired a few days apart. 

Thanks to this, the expert can control that the suspected clouds are real clouds, and the active learning 

classification is more efficient, as the problem is much simpler with multi-temporal detection than with 

only spectral tests. While MAJA uses reference cloud free data acquired before the image to classify, 

in ALCD, only reference images acquired after the image were used to classify the image in order to 

maximize the independence of results. 

The CESBIO reference masks have been validated using a 10-fold cross validation, which led to an 

overall accuracy of 98.8%, and were compared to the Hollstein reference dataset for a set of 7 scenes, 

and the intersection of both datasets agreed to 98.9%. The differences were analyzed visually and 

traced back to errors in the Hollstein data base (such as those shown in section 3.2.1), or to a different 

definition of shadows, which in Hollstein may correspond to terrain or cloud shadows. After exclusion 
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of the terrain shadows, the agreement was 99.7%. For details on the validation, see (Baetens et al., 

2019). 

The data directories contain the following S2 data: 

• The `Reference_dataset` directory contains 31 scenes selected in 2017 or 2018. 

• The `Hollstein` directory contains 7 scenes that were used to validate the ALCD tool by 

comparison to manually generated reference images kindly provided by Hollstein et al. (2016). 

For each product listed in the “reference_data” directory a set of files exists. The following files have 

been used for this exercise: 

• `classification_map.tif` --- the main product, which is the classified scene. 7 classes are 

available. Each one is represented with a different integer. 

o 0: no_data. 

o 1: not used. 

o 2: low clouds. 

o 3: high clouds. 

o 4: cloud shadows. 

o 5: land. 

o 6: water. 

o 7: snow. 

• `confidence_enhanced.tif` --- enhanced confidence map of the classification. The values are 

between 0 and 255 . 

• `Samples/` --- this directory contains all the shapefiles of the training and validation 

database, one per class. 

 

Preparation 

For CMIX only 31 scenes from the “reference_dataset” have been used, as the data from the 

“Hollstein” directory is already part of the S2 Hollstein dataset described in section 3.1.1. The collection 

of the CESBIO dataset was done mostly on newly formatted (granule based) products. Nevertheless, 

as one scene is shared with the Hollstein dataset and thus is still in the old format, this specific product 

was used in the old format. The old product name includes sensing and creation date, as well as the 

relative orbit number of the image which are stored inside database. Additionally, the granule IDs are 

stored. By using the stored information, the correct newly formatted (granule based) Sentinel-2 

products have been identified. The 31 products from the reference dataset have been acquired 

through the Copernicus Open Access Hub16. These products have then been provided to the 

participants. 

  

 
16 https://scihub.copernicus.eu/ 

https://scihub.copernicus.eu/
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3.2 Validation datasets strength and weakness analysis 
Each validation dataset has its strength and weaknesses. Especially as all datasets have not specifically 

been designed for the CMIX. In this section we will discuss the strength and weaknesses of the single 

datasets based on the requirement definitions for pixel-based validation given in section 3.3.1. Table 

5 gives a brief overview of the strength and weaknesses of all used validation datasets.  

Table 5: Validation dataset strength and weakness overview table 

Dataset Strength Weakness 

Hollstein Manual classification of 
polygons.  

Slight lack of sample quality 
(some false classified samples) 
Low level of detail 

PixBox High level of detail 
High level of classification 
precision 
Global coverage with stratified 
sampling (S2) 

Single pixel, thus a comparably 
small dataset 
Based on expert knowledge 
(could be biased) 

GSFC Assisted with ground-based 
imagery 
Over the same territory – can 
be used for consistency analysis 

Limited field of view and 
coverage 
Surfaces classes limited to 
location of sky camera 
Tendency to classify very thin 
cirrus as cloudy that may have 
only little effect on surface 
reflectance 

L8Biome Global coverage with stratified 
sampling 
All pixels in the images are 
manually classified 

Subjectivity of cloud definition 

CESBIO All pixels in the images are 
classified using a Machine 
Learning approach 

Dependence on the labeled 
data 
Classification error due to 
automatic classified data. 
Based on expert knowledge 
(could be biased) 

 

3.2.1 Hollstein dataset  
Before analyzing strengths and weaknesses of the Hollstein dataset, its purpose needs to be 

considered. The main purpose of the dataset was to be a training dataset for a classifier. This means, 

it was not meant to be used for validation. As the authors themselves have used the data for validation 

during training, by splitting the database randomly. But they point out, that this kind of validation is 

not comparable with any standard EO validation approach, where the “truth” is either real ground 

truth or simply a source with lower uncertainties.  

Keeping the initial purpose of the dataset in mind, following strengths and weaknesses are based on 

the objective to use the dataset as a validation source. 

The strength of the Hollstein dataset is the selection of products, which has a good distribution of solar 

zenith angles, seasons, land cover and cloud conditions (not evaluating the selected samples, but the 

products) but missing very high latitudes (arctic and antarctica).  
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The weaknesses of the dataset are multiple quality issues of the dataset concerning, purpose of the 

dataset, resolution, maintenance, format, product processing baseline, data correlation, and sample 

quality. 

Resolution: The data was collected on 20 m resolution. This fact leads to fuzzy information for 10 m 

bands.  

Maintenance: The dataset is not maintained, meaning there are no adjustments made since the 

underlying L1C data have been reprocessed. 

Format: The samples are stored on pixel level in a HDF5 database. Unfortunately, the polygons used 

to produce the database have not been archived.  

Processing baseline of used products: The collection is based on very early products. The products used 

for the collection have still been in the old multi-granule format. The products are not distributed with 

the database, only the pixel information (spectra, geometries, etc.) for the collected samples. 

Therefore, any change in the L1C data, especially geometric changes will make this dataset unusable 

for processors not capable of operating on mono-temporal single pixel basis. 

Correlated data: The samples are collected as polygons. This means that each polygon consists of 

tenths to hundreds of pixels. Figure 19 shows an example17 of a clear sample (samples have been 

extracted from 20 m resolution, here shown on 10 m RGB). The sample spacing is 20 meter which leads 

to a certain amount of correlation between the single samples. In the case of the example the 

correlation is obvious. This kind of correlations must be avoided when creating validation datasets. If 

all samples of the Hollstein dataset had been collected using the same shape and be evenly and 

stratified distributed over one scene, it would have been a better validation source. The only solution 

to this weakness would be to use the underlying polygons for a validation approach. This would mean 

to validate on vector level based on percentage of class agreement for each polygon.  

 

Figure 19: Example of spatially correlated samples 

  

Besides these issues, there are some quality constraints concerning the samples themselves.  

 
17 S2A_MSIL1C_20151204T170702_N0204_R069_T15TWJ_20151204T170659 
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Hollstein et al. 2016 had been aware of this fact, as they state: “It is evident that there is a large degree 

of freedom on how polygons are placed, and which objects are marked. Also, the extent of objects with 

diffuse boundaries poses a particular burden on the consistency of the manual classification. This 

merely indicates that a certain degree of subjectivity is inherent in this approach.” 

In the following section some examples of quality issues are shown, starting with the most important 

samples for this exercise, the cloud samples. Cloud samples are only taken at the center of opaque 

clouds. Semitransparent clouds are completely missing in the cloud class, as shown in Figure 20, Figure 

21 and Figure 22.18 

 
18 S2A_MSIL1C_20151203T105422_N0204_R051_T30SXH_20151203T105811 
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Figure 20: Example of only opaque cloud samples in the Hollstein dataset 

 
Figure 21: Detailed view (RGB only) 

 
Figure 22: Detailed view with cloud samples 

 

Nevertheless, semi-transparent clouds are collected within the cirrus class. Problematic with this 

collection is the mixture of semi-transparent clouds, not being cirrus clouds (e.g. thin, warm, low 

altitude, stratus or strato-cumulus clouds) and actual cirrus clouds. This mixture makes this class nearly 

unusable, especially in the context of CMIX this seems problematic.   

 

Clear samples are sometimes taken under arguable circumstances, especially clear samples over. While 

checking the data, the example in Figure 23 was found. The example is from Lago Maggiore and shows 

fog on the water surface. It is simple to prove that this is fog and no sun glint, since the time of the day 

of the image is too early for sun glint and there are trails cutting through the fog, that can be clearly 
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traced to boats, when zooming in. Figure 24 shows that clear water samples had been extracted for 

the database. This is quite worrying, as Hollstein et al. (2016) had stated in their publication that each 

sample site has been revisited to ensure the best quality.  

 
Figure 23: Clear water sample (only RGB) 

 
Figure 24: Clear water sample with sample points 

  

3.2.2 S2/L8 PixBox dataset 
The strength of the PixBox validation dataset is its depth in detail. It captures for each pixel a great 

variety of information, i.e. opacity of cloud coverage, surface type, snow coverage, shadow type, etc. 

Furthermore, the dataset fulfills the requirement of stratified sampling, as the samples are equally 

distributed thematically and spatially per scene. Additionally, the single products of the collection are 

spatially well distributed. 

The weakness of the dataset is the bias introduced by the expert collecting the information. On the 

one hand, a single expert is better trained to identify and classify pixel properties compared to a single 

layman, through his expert knowledge. On the other hand, multiple laymen could achieve better 

results by lowering the bias compared to a single expert. Using multiple experts to conduct a PixBox 

collection would be very costly. Nevertheless, the error introduced by this bias can be considered low 

compared to semi-automatically produced validation datasets. Another weakness of the dataset is the 

inability to detect systematic errors, a weakness that prevails all validation datasets.  

3.2.3 S2/L8 GSFC dataset 
The GSFC is the only dataset (among those used in CMIX) that uses ancillary information to help the 

expert to identify clouds in the satellite imagery – ground-based images of the sky and AOT 

measurements from the Aeronet station. This method was designed to reduce subjectivity in labelling 

clouds, but all the masking of the sky images was made manually, as well as the correspondence with 

the images. As seen on the figures, some thin cloud pixels in the sky images are not included, so the 

subjectivity remains. Almost all pixels in the imagery were labelled except of those on the boundaries 

between cloudy and clear areas. Another strength of this dataset is that it’s acquired over the same 

territory, consistent errors in cloud detection can be analyzed. 

The limitations of the dataset include the following: it’s a single site and ideally multiple sites (like in 

the Aeronet case) are needed, works are in progress to expand the sites; the field of view is limited to 

~30 km in diameter and cannot cover the whole extent of a Landsat 8 (~185 km) or Sentinel-2 (290 km) 
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scene. The dataset also has the tendency to classify very thin cirrus as cloudy, that may have only little 

effect on the surface reflectance.  

3.2.4 L8 Biome dataset 
The strengths of the L8Biome dataset include stratified random sampling of the scenes that represent 

various cloud and land cover conditions. All pixels of the Landsat scenes are classified. Limitations of 

this dataset is that labelling is fully driven by an expert and based on the subjective definition of what 

the cloud is. Nevertheless, the error introduced by this bias can be considered low compared to semi-

automatically produced validation datasets.  

3.2.5 S2 CESBIO dataset 
The strengths of the S2 CESBIO dataset is that it provides fully labelled scenes derived from the 

machine learning algorithm interactively supervised by an expert, along with the confidence of that 

classification. The main weakness is that machine learning classification is not error-free and providing 

a confidence of classification is still a major challenge in the machine learning domain. Nevertheless, 

the scenes were fully checked and iteratively improved by the experts to achieve best possible results. 

 

3.3 Validation methods 
Since reliable cloud masking and flagging of unreliable pixels of Level 1 data is most important for many 

downstream algorithms and processors (for CMIX the purpose is AC over land & water), the quality 

assessment and validation of cloud masks and their algorithms have become more and more 

important. 

Typically, there are five main approaches to assess the quality of cloud masking algorithms. It is 

important to note that all different methodologies are also bound to a specific definition of input data. 

The four main approaches are:  

1. Visual inspection of images  

• typical cases  

• critical cases (know issues for S2 spectral bands: cloud vs snow, semi-transparent clouds, 

small patchy cloud fields, coastlines, bright beaches, salt lakes, urban areas, etc.)  

2. Statistical assessment on global, representative scale 

• Expert pixel collections  

• Manual classifications  

3. Self consistency in reflectance time series 

• Undetected clouds add noise of surface reflectance time series. Comparing the noise on 

this surface reflectance time series allows to compare the performances of different cloud 

masking methods 

4. Level 3 composites  

• Temporal aggregation of surface reflectance or L2 parameters  

• criteria  

o „colouring“ of L3s, artefacts (i.e. whiter pixels showing cloud residuals) 

o number of valid observations.  

5. Object-oriented: errors related to  

• oversegmentation,  

• undersegmentation,  

• edge-location,  

• fragmentation and shape  
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During the CMIX the first two approaches were used for validation with statistical assessment being 

the main validation tool. The third and fourth approaches were not listed at the beginning of the 

exercise as production of a complete time series over multiple sites would have increased the 

processing requirements for all participants a lot. Nevertheless, this approach might be used during 

CMIX II. The fifth methodology was listed in the first workshop as well as in the protocol. However, the 

effort of creating a needed reference dataset exceeded the resources for this exercise. In addition, the 

approach will only work for small opaque clouds, evenly distributed throughout a product with very 

sharp cloud edges. Therefore, the method was not used during CMIX. 

3.3.1 Pixel based validation (confusion matrices) 
Thematic accuracy describes the relationship of a mapped class of a remotely sensed pixel to a defined 

“truth” reference for the respective pixel. To ensure a meaningful result, all reference data (in this case 

pixels) must be correct or at least knowledge about the accuracy of the reference data is needed to 

allow a fair comparison with meaningful results (Congalton, 2007). Congalton (1991) points out that, 

“Although no reference data set may be completely accurate, it is important that the reference data 

have high accuracy or else it is not a fair assessment. Therefore, it is critical that the ground or 

reference data collection be carefully considered in any accuracy assessment.”  

Not all used datasets described in section 3.1 fulfill this requirement. The CESBIO dataset for example 

is based on a supervised classification. Even though, it is validated against reference data and shows a 

high accuracy, the validation results are only a proxy for the quality and only overall accuracies are 

provided with the dataset. Additionally classification errors for example in the Hollstein dataset have 

been found, which has been the validation source. Therefore, the high accuracy for all pixels is not 

given for these two datasets. Nevertheless, the other datasets have not provide accuracy numbers 

either. This needs to be considered when evaluating the validation results.  

Pixel based validation was done based on the validation datasets described in section 3.1. 

The basis for the accuracy assessment (validation) is a so-called confusion or error matrix, a squared 

array of numbers. In this array columns define the classes of the reference data, while rows show the 

algorithm results. Agreement between the two data can be found on the diagonal of the matrix. A 

confusion matrix is an efficient way of quantitatively assessing two classifications (reference vs. 

algorithm results). There are multiple measures of accuracy that can be calculated from the matrix. 

They are defined as follows: 

• Overall accuracy 
(OA): 

Sum of all the entries along the diagonal divided by the total number 
of samples in the matrix (in percent). 

• Balanced overall 
accuracy (BOA): 

Calculated as the average of the proportion corrects of each class 
individually (in percent). 

• User accuracy (UA): Number of correctly classified samples of a class, divided by the sum 
of all classified samples of the same class (in percent). 

• Producer accuracy 
(PA): 

Number of correctly classified samples of a class, divided by the sum 
of all reference samples of the same class (in percent). 

• F score: Harmonic mean of UA and PA. 

From accuracies also the error can be calculated. Errors are divided into commission and omission 

errors, samples from a specific reference class that have been classified wrong by the algorithm: 
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• Commission error: Percent of samples classified by the algorithm as a certain class that 
are classified differently in the reference dataset. The same as 100% 
minus user accuracy. 

• Omission error: Percent of samples from a specific reference class that have been 
classified wrong by the algorithm. The same as 100% minus producer 
accuracy. 

High number in User’s Accuracy for the CLOUD flag means that the pixel under the CLOUD flag is most 

probably a cloud. If the Producer’s Accuracy is high for the reference cloud it means that a reference 

cloud is most probably classified as CLOUD. A low Producers’ Accuracy for clouds indicates that not all 

clouds are classified as CLOUD (error of omission), while a low User’s Accuracy for the CLOUD flag 

accuracy indicates that the CLOUD flag has classified also clear surfaces (error of commission). 

 

Figure 25 shows an example of a confusion matrix including all accuracies and errors. 

 

Figure 25: Example of a confusion matrix for a three classed (A,B,C) classification 

Since each omission from the correct class is a commission into a wrong class, it is important 

considering user’s and producer’s accuracy. Reporting only one measure could be misleading 

(Congalton, 2007). 

 

Congalton (1991) stated that the following factors must be considered to generate a valid 

confusion/error matrix: 

1. Reference data collection. 

2. Classification scheme. 

3. Sampling scheme  

4. Spatial autocorrelation  

5. Sample size and sample unit  

Not considering one of these factors could already lead to significant shortcomings in the accuracy 

assessment. The five points in relation to this exercise will be addressed briefly. 

A B C Total

User's 

accuracy [%]

Commission

error [%]

A
195 10 15 220 89% 11%

B
5 120 15 140 86% 14%

C
0 70 170 240 71% 29%

Total 200 200 200 600

Producer's

accuracy [%]
98% 60% 85%

Omission

error [%]
3% 40% 15%

Overall accuary 81%

Overall error 19%

Truth (validation dataset)
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Reference data collection: 

Reference data collection is the most important factor and first step in any assessment procedure. The 

significance of the assessment is depending on the correctness of the reference. There are multiple 

ways of creating a reference data collection. Each collection method adds a certain bias to the 

reference. This bias needs to be known and kept as low as possible. 

Classification scheme: 

The classification scheme of the classification (algorithm output) and the reference data must be 

identical. Not in all cases the reference has the same classification scheme and a reclassification is 

needed before validation. By reclassifying reference data or algorithm outputs a certain bias is 

introduced into the validation results, especially if the definition of the classes is not 100% identical. In 

case of validating a reference against multiple algorithm outputs, all algorithm outputs must have 

identical classes which are identically defined, to ensure a precise comparability. 

Sampling scheme: 

This factor is not of a big importance for CMIX, as only two classes (cloud vs. non-cloud) are examined. 

Nevertheless, it should be noted that when validating multiple classes, knowledge of the distribution 

of the classes in the algorithm output should be considered. A stratified random sampling approach is 

normally considered to be the most useful approach. For CMIX this approach is less feasible, as these 

sampling approaches start from the classification (algorithm output). In CMIX there is not only one 

classification output but multiple outputs that are compared. Therefore, the sampling needs to be 

done on the original input data used for creating the reference dataset. For some datasets this 

methodology cannot even be applied, like the GSFC dataset, which is based on sky-camera observation. 

Nevertheless, the distribution of the classes and samples in relation to the validated product need to 

be considered when analyzing the assessment result. 

Another complication lies in the transition of a classification, if the classes are not simply “binary” like 

transparent clouds/cloud borders. Several data sets tend not to sample the limits of clouds, where the 

difficulty often lies. It is the case for GSFC and Hollstein. 

 

Spatial Autocorrelation 

Congalton (2007) states: “Because of sensor resolution, landscape variability, and other factors, 

remotely sensed data are often spatially autocorrelated. Spatial autocorrelation involves a 

dependency between neighboring pixels such that a certain quality or characteristic at one location 

has an effect on that same quality or characteristic at neighboring locations (Cliff and Ord 1973, 

Congalton 1988a). Spatial autocorrelation can affect the result of an accuracy assessment if an error 

in a certain location can be found to positively or negatively influence errors in surrounding locations. 

The best way to minimize spatial autocorrelation is to impose some minimum distance between 

sample units.” 

This factor mostly needs to be considered when analyzing the Hollstein, CESBIO, GSFC and L8Biome 

dataset, as these datasets consist of classified pixel areas. In case of L8Biome and CESBIO dataset even 

of a completely classified product. 

Sample Size and Sample Unit: 

For the size of the samples a general rule of thumb is to use a minimum of 50 to 100 samples per class. 

Using this rule each class can be assessed individually (Congalton & Green, 1999). Each of the validation 

datasets fulfills this requirement clearly. 
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The sample unit factor can be neglected for CMIX as the reference data is based on the algorithm input 

products. This means the input for creating the validation dataset are also Sentinel-2 or Landsat 8 data 

and thus the sample unit is equal to Sentinel-2 or Landsat 8 resolution. 

 

Confusion matrices used in the CMIX are mostly based on binary classifications, in this case cloud and 

non-cloud. Figure 26 shows an example of a confusion matrix used in CMIX. 

Note: 

Sample unit is the size of the sample. If you are dealing with in-situ data collected in the field, this 

can be relevant. For example, if you are validating a LC map with a pixel resolution of 30m. 

Assuming you did not use any minimum mapping unit above this, your in-situ samples should at 

least cover 900m², to represent your classification properly. 
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Figure 26: Example of a confusion matrix used for CMIX incl. definitions 

 

CLOUD NO CLOUD Total

User's 

accuracy [%]

Commission

error [%]

CLOUD
R_cloud_as_M_cloud R_ncloud_as_M_cloud Sum(M_cloud) R_cloud_as_M_cloud / Sum(M_cloud) 1-(R_cloud_as_M_cloud / Sum(M_cloud))

NO CLOUD
R_cloud_as_M_ncloud R_ncloud_as_M_ncloud Sum(M_ncloud) R_ncloud_as_M_ncloud / Sum(M_ncloud) 1-(R_ncloud_as_M_ncloud / Sum(M_ncloud))

Total

Sum(R_cloud) Sum(R_ncloud)

Sum(R_cloud) + Sum(R_ncloud)

or 

Sum(M_cloud) + Sum(M_ncloud)

Producer's

accuracy [%]
R_cloud_as_M_cloud / Sum(R_cloud) R_ncloud_as_M_ncloud / Sum(R_ncloud)

Omission

error [%]
1-(R_cloud_as_M_cloud / Sum(R_cloud)) 1-(R_ncloud_as_M_ncloud / Sum(R_ncloud))

Overall accuary

Overall error

Reference

(R_cloud_as_M_cloud + R_ncloud_as_M_ncloud) / Sum(R_cloud) + Sum(R_ncloud)

1 - (R_cloud_as_M_cloud + R_ncloud_as_M_ncloud) / Sum(R_cloud) + Sum(R_ncloud)
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3.3.2 Visual analysis 
Statistical assessment of a classification, as described in section 3.3.1, is commonly based on samples. 

Therefore, it can only investigate a subset of a classified satellite image. Even a very carefully created 

reference will in most cases not be able to identify the critical cases for each cloud masking algorithm. 

This is especially true for systematic errors which can only be identified by monitoring time series of 

single pixels of potentially critical cases. In case of Sentinel-2 these normally are bright urban targets 

or other bright bare surfaces like salt lakes or beaches. While these systematic errors have not been 

studied during CMIX, as no time series had been produced and no reference dataset allowed this type 

of analyses, critical cases for any cloud masking algorithm still exist, like cloud borders, spatially 

continuous thinning of clouds, as well as unsystematic detection of other bright surfaces. Besides 

analyzing the behavior of all algorithms regarding these critical cases, visual inspection also allows a 

simple way of comparing the performance of a cloud mask in the spatial domain.  

3.4 Intercomparison results 

3.4.1 Pixel based validation (confusion matrices) 

3.4.1.1 S2 CESBIO dataset 

Table 6 shows performance metrics, when applying cloud masking algorithms on the Sentinel-2 CESBIO 

datasets. Several remarks shall be made, when analyzing these results. The number of reference pixels 

varied, since processors produced masks at various spatial resolution: 10 m (FORCE, InterSSIM, LaSRC 

and S2cloudless), 20 m (ATCOR, Idepix, Fmask 4.0 CCA, Sen2Cor), 60 m (CD-FCNN), and 240 m (MAJA). 

Cloud and non-cloud classes were imbalanced in the reference dataset, therefore it would lead to the 

OA being more biased towards non-cloud classes. Therefore, the balanced OA (BOA) would be a more 

appropriate metric. BOA varied from 79.5% to 90.5%, with average being 85.9±3.9%. Except MAJA 

(whose developers generated the CESBIO dataset) with 92.9%, the highest Cloud-PA was 85.6%, with 

average being 75.9±8.7%, meaning that some of the algorithms (ATCOR, Sen2Cor and CD-FCNN) 

missed almost 25% of clouds identified in the CESBIO dataset. 

 

Table 6: Performance metrics of algorithm using the CESBIO data 

     
Cloud Non-cloud 

Processor % 
cloud 

Total num 
valid pixels 

OA BOA PA UA F PA UA F 

ATCOR 24.3 772,086,084 88.6 80.4 64.4 84.9 73.3 96.3 89.4 92.8 

Idepix 24.3 772,086,084 91.7 86.9 77.5 86.9 81.9 96.2 93.0 94.6 

MAJA 25.6 697,056,918 89.2 90.5 92.9 72.7 81.5 88.0 97.3 92.4 

Fmask 4.0 
CCA 

24.3 772,086,084 93.3 88.9 80.4 90.8 85.3 97.4 93.9 95.6 

FORCE 24.3 3,088,386,349 91.1 88.9 84.7 79.9 82.2 93.2 95.0 94.1 

InterSSIM 24.3 3,088,386,349 93.2 88.0 77.8 93.1 84.8 98.2 93.3 95.6 

LaSRC 24.3 3,088,386,349 81.2 82.7 85.6 57.6 68.9 79.8 94.6 86.6 

S2cloudless 24.3 3,088,386,349 93.1 88.8 80.4 90.2 85.0 97.2 93.9 95.5 

sen2cor 24.3 772,086,084 91.0 84.7 72.3 88.7 79.6 97.0 91.6 94.3 

CD-FCNN 24.3 85,782,723 89.5 79.5 60.3 94.1 73.5 98.8 88.6 93.4 
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3.4.1.2 S2 GSFC 

Table 7 shows the results of comparing algorithm outcomes against the S2 GSFC dataset. As with 

CESBIO dataset, the different amount of reference pixels is the result of algorithms producing maps at 

various spatial resolutions. Also, MAJA provided only 10 images out of 28 images. In the S2 GSFC 

dataset, cloud and non-cloud are almost balanced (approx. 61% of reference pixels are identified as 

clouds), therefore the difference between OA and BOA are minimal. BOA varied from 80.7% to 96.8% 

with LaSRC being the outlier (developers of LaSRC produced GSFC data), with average being 85.9±2.9% 

(not considering LaSRC). Average cloud-PA and cloud-UA was 73.7±5.6% and 98.2±2.7%, respectively, 

meaning large omission errors. 

The reason for all algorithms producing lower accuracies compared to LaSRC is that they were unable 

to correctly classify thin (transparent/cirrus) clouds, which, in turn, LaSRC is masking using a 

conservative threshold (0.003 in reflectance units; for LaSRCv3.5.5) applied for the cirrus band (B10). 

Those clouds were labelled as thin, since they were clearly visible in the ground-based images. If thin 

clouds are not considered in the analysis (Table 8), all algorithms show much better performance: 

average BOA is 94.4±2.9% (an average gain +7.4±2.6%) and cloud-PA is 90.8±5.9% (an average gain 

+14.8±5.2%), while cloud-UA remained essentially the same 98.1±2.7%. These results show the 

differences between algorithms in determining and identifying thin (transparent/cirrus) clouds, at the 

same time mostly agreeing on thick clouds.  

 

Table 7: Performance metrics of algorithms using the GSFC data 

     
Cloud Non-cloud 

Processor % 
cloud 

Total num 
valid pixels 

OA BOA PA UA F PA UA F 

ATCOR 60.6 11,566,166 77.9 81.7 63.5 100.0 77.7 100.0 64.0 78.1 

Idepix 60.6 11,566,166 84.8 86.1 80.1 93.9 86.5 92.0 75.1 82.7 

MAJA 49.2 15,609,378 80.9 80.7 66.2 93.0 77.4 95.2 74.4 83.5 

Fmask 4.0 
CCA 60.6 11,566,166 86.0 88.4 77.1 99.7 86.9 99.6 73.9 84.8 

FORCE 60.6 46,266,297 86.1 88.2 78.2 98.6 87.2 98.3 74.6 84.8 

InterSSIM 60.6 46,266,297 85.0 87.6 75.4 99.7 85.9 99.7 72.5 84.0 

LaSRC 60.6 46,257,284 96.7 96.8 96.3 98.2 97.3 97.3 94.5 95.9 

S2cloudless 60.6 46,266,297 85.2 87.7 76.1 99.3 86.2 99.2 73.0 84.1 

sen2cor 60.6 11,566,166 85.2 87.8 75.8 99.7 86.1 99.7 72.8 84.2 

CD-FCNN 60.6 46,266,297 82.4 85.4 71.0 99.9 83.0 99.8 69.1 81.7 
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Table 8: Performance metrics of algorithms using the GSFC data and removing thin (transparent) clouds from the reference 

     
Cloud Non-cloud 

Processor % 
cloud 

Total num 
valid pixels 

OA BOA PA UA F PA UA F 

ATCOR 55.5 10,236,222 86.9 88.2 76.4 100.0 86.6 100.0 77.3 87.2 

Idepix 55.5 10,236,222 92.5 92.5 92.9 93.6 93.2 92.0 91.3 91.6 

MAJA 40.8 13,380,304 92.7 92.2 89.1 92.7 90.9 95.2 92.7 93.9 

Fmask 4.0 
CCA 55.5 10,236,222 96.1 96.5 93.3 99.7 96.4 99.6 92.3 95.8 

FORCE 55.5 40,946,551 95.9 96.1 94.0 98.5 96.2 98.3 93.0 95.5 

InterSSIM 55.5 40,946,551 95.6 96.0 92.4 99.7 95.9 99.7 91.3 95.3 

LaSRC 55.5 40,937,538 98.0 97.9 98.5 97.8 98.2 97.3 98.1 97.7 

S2cloudless 55.5 40,946,551 95.7 96.1 93.0 99.3 96.0 99.2 91.9 95.4 

sen2cor 55.5 10,236,222 95.0 95.4 91.2 99.7 95.3 99.7 90.1 94.6 

CD-FCNN 55.5 40,946,551 92.9 93.6 87.3 99.9 93.1 99.8 86.3 92.6 

 

3.4.1.3 S2 Pixbox dataset 

Not all algorithms could process all 29 Products of the PixBox S2 dataset. The reasons for this were 

limitations of allowed geometries (ATCOR) or too sparse time series around the acquisition (MAJA).  

Table 9: Overview of submitted products and formats for the PixBox dataset 

Algorithm Number of 
products 

File format Number of 
classes 

ATCOR 27 BSQ 5 

CD-FCNN 29 HDF5 3 

Fmask 4.0 CCA 29 TIFF 8 

FORCE 29 TIFF 15 

Idepix 29 NetCDF 21 

InterSSIM 29 TIFF 2 

LaSRC 29 TIFF 7 

MAJA 14 TIFF 8 

S2cloudless 29 TIFF 2 

sen2cor 29 JP2 12 

 

To account for the difference of available products for validation, two different comparisons were 

made, one using all available products for each algorithm and a second one using only the products 

that all algorithms have been produced. We call the second dataset the least common denominator 

(LCD) subset, while the first is referred to as the “complete dataset”. The whole comparison could have 

been made only on the LCD subset, but this reduces the complete dataset by half, which reduces its 

significance. Therefore, the complete dataset also was used for comparison. In this comparison using 

the complete dataset, results for MAJA must be taken with caution, as they are only based on 14 out 

of 29 products. 

As the PixBox dataset includes a great variety of collected pixel features (see section 3.1.2) a very 

detailed analysis could be made. This includes analyzing the performance of the algorithms including 

and excluding very thin clouds, a detailed comparison of cloud/clear of the algorithms compared to 
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different classes of the PixBox dataset, as well as the analysis of the performance separated over land 

and water. 

Table 10 lists the combinations that have been analyzed. 

Table 10: Analysis scenarios for the PixBox S2 dataset 

Scenarios Dataset Incl. thin clouds Incl. snow Surface 

1 Complete No Yes All 

2 Complete Yes Yes All 

3 Complete Yes No All 

4 LCD No Yes All 

5 LCD Yes Yes All 

6 LCD Yes No All 

7 Complete Yes No Land 

8 Complete Yes No Water 

 

In addition to these scenarios also detailed “confusion matrix like” figures have been created. These 

show the distribution of cloud and clear detected pixels of each algorithm compared to the collected 

pixel’s features. These plots help to identify strength and weaknesses of each algorithm. The single 

confusion matrices per algorithm are listed in the annex. 

Table 11 shows the results of all algorithms for the first scenario. The complete dataset of each 

algorithm was used over all surfaces excluding thin clouds. 

Table 11: S2 PixBox results - complete dataset without thin clouds, over all surfaces 

Algorithm PA 
Non-
cloud 

PA 
Cloud 

UA Non-
cloud 

UA 
Cloud 

OA Balanced 
OA 

Number 
of pixels 

ATCOR 89.9 70.8 83.1 81.4 82.54 80.35 13094 

CD-FCNN 93.4 82.7 90.3 87.9 89.46 88.05 13981 

Fmask 4.0 CCA 89 90.8 94.3 82.7 89.64 89.9 13981 

FORCE 81.2 90.4 93.6 73.6 84.56 85.8 13986 

Idepix 66.7 95.3 96.1 62.4 77.21 81 13986 

InterSSIM 95.2 86.2 92.2 91.3 91.92 90.7 13986 

LaSRC 48.2 93.8 93.1 51.3 64.95 71 13986 

MAJA 82.3 94.3 96.4 74.3 86.52 88.3 6760 

S2cloudless 91.6 91.6 94.9 86.4 91.6 91.6 13986 

sen2cor 86.9 82.7 89.6 78.6 85.36 84.8 13986 

 

Some algorithms show a fair amount of commissioning error of clear observations as clouds, like 

FORCE, IdePix, sen2cor and especially LaSRC. In the detailed figures given in this section, it will become 

clear that especially LaSRC and IdePix detected most clear snow pixels as cloud. The IdePix team had 

indicated that this was caused by a bug in the algorithm bypassing the snow test. This bug was fixed 

but the data used in CMIX include this error. For LaSRC, which has the main aim at atmospheric 
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correction, snow is defined as non-valid pixels, because aerosol retrievals over snow are problematic 

and highly unreliable.19 

Figure 27 to Figure 36 give a detailed insight to more information stored in the PixBox dataset. The 

figures show for multiple classes of the PixBox dataset, how the algorithms handle these pixels to be 

either cloud or clear. This detailed information is not part of the scenario 1, but gives a detailed view 

to better understand the results of the following scenario (including thin clouds). Most classes, like the 

cloud classes are self-explaining, while some need a bit of detail. “Clear” for example are all clear pixels 

except snow- or ice-covered clear pixels. These snow- and ice-covered clear pixels are listed under 

“Clear Snow”. “Cloud Border” comprises pixels that are located directly at a cloud border and are 

characterized by being a mixed cloud/clear pixel. 

Figure 27 to Figure 36 show the above-described shortcoming of some algorithms to properly identify 

snow/ice pixels as clear. It also shows that algorithms that are using a cloud buffer/dilation (FORCE, 

FMask 4.0 CCA, InterSSIM, MAJA, S2cloudless) are superior in identifying mixed cloud/clear pixels at 

cloud borders. 

The figures also show that only three algorithms (IdePix, LaSRC, and MAJA) have a higher tendency to 

correctly detect thin semi-transparent clouds. 

In addition to this, Figure 57 and Figure 58 in the annex, give a detailed overview of correct 

classification and misclassification of clear pixel over different surfaces for each algorithm. 

 
19 Note of advice to the algorithm developers: Create a separate flag for these invalid snow observations 
instead of including them in a cloud flag. 
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Figure 27: Validation results of cloud/clear vs. different in-situ cloud types, clear and snow - for ATCOR 

 
Figure 28: Validation results of cloud/clear vs. different in-situ cloud types, clear and snow - for CD-FCNN 

 
Figure 29: Validation results of cloud/clear vs. different in-situ cloud types, clear and snow - for Fmask 4.0 CCA 

 
Figure 30: Validation results of cloud/clear vs. different in-situ cloud types, clear and snow - for FORCE 
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Figure 31: Validation results of cloud/clear vs. different in-situ cloud types, clear and snow - for IdePix 

 
Figure 32: Validation results of cloud/clear vs. different in-situ cloud types, clear and snow - for InterSSIM 

 
Figure 33: Validation results of cloud/clear vs. different in-situ cloud types, clear and snow - for LaSRC 

 
Figure 34: Validation results of cloud/clear vs. different in-situ cloud types, clear and snow - for MAJA 
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Figure 35: Validation results of cloud/clear vs. different in-situ cloud types, clear and snow - for S2cloudless 

 
Figure 36: Validation results of cloud/clear vs. different in-situ cloud types, clear and snow - for Sen2cor 

 

Table 12 shows now the results of the second scenario, including thin semi-transparent clouds. It 

becomes obvious that thin semitransparent clouds are not well detected by any algorithm. Even these 

performing around 90% balanced overall accuracy (BOA) on the dataset without thin clouds, like 

S2cloudless, InterSSIM and Fmask 4.0 CCA, are now performing below 86% BOA. Only LaSRC and MAJA 

show decrease in BOA below 4%, even though the performance of LaSRC is very low in general due to 

the snow pixels, as described above. 

When taking a closer look at the UA for non-cloud pixels, you will recognize a good decrease after 

additionally considering the thin semi-transparent clouds for most of the algorithms. In other words, 

there is a good amount of commission error of non-cloud flagged pixels, which are cloud. 

Table 12: S2 PixBox results - complete dataset including thin clouds, over all surfaces 

Algorithm PA 
Non-
cloud 

PA 
Cloud 

UA Non-
cloud 

UA 
Cloud 

OA Balanced 
OA 

Number 
of pixels 

ATCOR 89.9 62.5 71.8 85.3 76.64 76.2 15636 

CD-FCNN 93.4 66 75.5 89.9 80.49 79.7 16731 

Fmask 4.0 CCA 89 79.4 82.9 86.5 84.45 84.2 16731 

FORCE 81.2 79 81.2 78.9 80.15 80.1 16737 

Idepix 66.7 85.9 84.1 69.7 75.73 76.3 16737 

InterSSIM 95.2 72.7 79.6 93.2 84.62 83.95 16737 

LaSRC 48.2 86.8 80.3 59.9 66.36 67.5 16737 

MAJA 82.3 88.6 89.9 80.2 85.09 85.45 7922 

S2cloudless 91.6 80.2 83.9 89.5 86.25 85.9 16737 

sen2cor 86.9 74.7 79.4 83.6 81.16 80.8 16737 
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Nevertheless, algorithms having a high commission error of non-cloud pixels often have a low 

commission error for cloud pixels (The usage of a buffer/dilation might have quite an influence here). 

This shows that there are three major classes of algorithms, cloud conservative and non-cloud 

conservative and balanced. Non-cloud conservative approaches are mostly needed for applications 

that do not allow cloud contamination (e.g. the remote sensing of land, sea-, and ice surface 

temperatures, of vegetation biophysical variables, of total column water vapor or of aerosol optical 

properties), while cloud conservative approaches are mostly needed for cloud remote sensing 

applications. Depending on the application and sensor, a commission error can be rated as less 

problematic, for example due to the high repetition cycle of Sentinel-2. For these cases it might be a 

big issue, if the error is systematic. 

As two of the algorithms had strong limitations or even failure with snow pixels, we also excluded the 

snow from the dataset. The third scenario is therefore used to see the influence snow has on the cloud 

detection, especially for these two algorithms having an issue with this (IdePix and LaSRC). When 

comparing the BOA, it becomes clear that removing snow does not have a big difference on the results 

of the other algorithms having a proper snow detection implemented. All results (except IdePix and 

LaSRC) get only a bit better without snow, with a maximum of 2% for FMask 4.0 CCA. But excluding 

snow from the analysis, shows that now IdePix and LaSRC show comparable results to the other 

algorithms. It is also worth mentioning that the most stable algorithm over the three shown scenarios 

is MAJA, with a change of BOA between the scenarios below 3%, but MAJA produced only half of the 

products. 

Table 13: S2 PixBox results - complete dataset including thin clouds, over all surfaces except snow 

Algorithm PA 
Non-
cloud 

PA 
Cloud 

UA Non-
cloud 

UA 
Cloud 

OA Balanced 
OA 

Number 
of pixels 

ATCOR 89.5 64.8 69.8 87.1 76.55 77.15 13187 

CD-FCNN 93 67.8 72.9 91.3 79.96 80.4 13485 

Fmask 4.0 CCA 91.4 81.1 81.8 91 86.04 86.25 13485 

FORCE 84.5 79.7 79.5 84.7 82.01 82.1 13490 

Idepix 83.5 84.5 83.3 84.7 84.03 84 13490 

InterSSIM 95.3 74.4 77.6 94.5 84.46 84.85 13490 

LaSRC 63.2 85.1 79.8 71.4 74.57 74.15 13490 

MAJA 82.7 89.5 89.2 83.2 86.03 86.1 6255 

S2cloudless 92 81.4 82.1 91.6 86.49 86.7 13490 

sen2cor 86.4 77.7 78.3 86.1 81.91 82.05 13490 

 

Scenarios 4 to 6 have been created to have a direct comparison between the algorithms based on the 

minimum number of products produced by all of them. This was mostly driven by MAJA, as this 

algorithm had produced only half of the complete dataset, due to processing requirements. 

It might be important to note that these categorizations are based on the cloud definitions each 

participant had provided, as the requirement for CMIX was to provide a binary cloud mask. The 

provided binary masks represent what each participants thought was best to represent the 

provided algorithm. Nevertheless, most of the algorithms provide more detailed cloud masks or 

additional probabilities to give the used more control on the cloud masking behavior of the 

algorithm.  
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Table 14 shows overall and balanced overall accuracies for scenarios 4 to 6, which are basically the 

same as the previous three (scenarios 1 to 3) but using a reduced dataset. 

The results are a bit different compared to the complete dataset. But they show the same tendencies 

for all algorithms. Depending on the tendency of being cloud conservative, non-cloud conservative or 

balanced the results for the single algorithms increase or decrease a few precent. 
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Table 14: S2 PixBox results – comparison of algorithms using the LCD dataset (scenarios 4 to 6) 

 Excl. thin clouds Incl. thin clouds Incl. thin clouds, excl. snow 

Algorithm OA BOA OA BOA OA BOA 

ATCOR 85.46 81.6 80 78.3 79.58 79.25 

CD-FCNN 88.22 85.95 80.18 78.6 79.8 79.5 

Fmask 4.0 CCA 90.85 89.65 86.03 85.1 87.09 86.9 

FORCE 87.09 88.15 83.15 83 85.21 85.15 

Idepix 74.14 78.8 72.67 73.8 83.04 83 

InterSSIM 93.09 91.1 85.66 84.2 85.47 85.2 

LaSRC 66.67 73.35 68.53 70.65 77.73 78 

MAJA 86.52 88.3 85.09 85.45 86.03 86.1 

S2cloudless 93.82 93.05 88.15 87.25 87.96 87.75 

sen2cor 87.47 85.25 83.36 82.25 85.58 85.4 

 

For convenience Table 15 shows a comparison of balanced overall accuracies of scenarios 1 & 4, 2 & 

5, as well as 3 & 6. The differences between the complete dataset and the LCD dataset are mostly 

below 2%, with a few exceptions. 

Table 15: S2 PixBox results – comparison of BOA of scenarios 1 & 4, 2 & 5, as well as 3 & 6. 

 Excl. thin clouds Incl. thin clouds Incl. thin clouds, excl. snow 

Algorithm BOA 
comp. 

BOA LCD BOA 
comp. 

BOA LCD BOA comp. BOA LCD 

ATCOR 80.35 81.6 76.2 78.3 77.15 79.25 

CD-FCNN 88.05 85.95 79.7 78.6 80.4 79.5 

Fmask 4.0 CCA 89.9 89.65 84.2 85.1 86.25 86.9 

FORCE 85.8 88.15 80.1 83 82.1 85.15 

Idepix 81 78.8 76.3 73.8 84 83 

InterSSIM 90.7 91.1 83.95 84.2 84.85 85.2 

LaSRC 71 73.35 67.5 70.65 74.15 78 

MAJA 88.3 88.3 85.45 85.45 86.1 86.1 

S2cloudless 91.6 93.05 85.9 87.25 86.7 87.75 

sen2cor 84.8 85.25 80.8 82.25 82.05 85.4 

 

As we now have gotten some insight into the behavior of the algorithms in relation to different cloud 

opacities, snow, and a reduced dataset, we like to take a closer look at the performance over the two 

major earth surfaces, land and water, separately. 

Table 16 shows the results for all algorithms only over land surfaces, excluding snow, while Table 17 

shows the results over water surfaces, also excluding snow/ice. The results show a small superiority of 

the algorithms to detect clouds over land, compared to water. Nevertheless, some algorithms perform 

very good over land, while performance drops 8% to 15% over water, especially CD-FCNN, InterSSIM, 
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ATCOR, and S2cloudless (all over 10% decrease). For others, the performance decreases less. For the 

four algorithms showing the biggest decrease in performance over water it might be important to note 

that three of these rely on machine learning (CD-FCNN, InterSSIM, and S2cloudless). Therefore, the 

under-performance might be cause by a training dataset having a bias for land surfaces. 

Table 16: S2 PixBox results - complete dataset including thin clouds, over land surfaces except snow. 

Algorithm PA 
Non-
cloud 

PA 
Cloud 

UA Non-
cloud 

UA 
Cloud 

OA Balanced 
OA 

Number 
of pixels 

ATCOR 88.9 73.9 74.7 88.5 80.86 81.4 7190 

CD-FCNN 89.2 82.7 82.1 89.6 85.77 85.95 7275 

Fmask 4.0 CCA 91.6 88.7 87.8 92.2 90.07 90.15 7275 

FORCE 83.8 87.6 85.7 85.9 85.79 85.7 7277 

Idepix 82.6 90.1 88.1 85.4 86.57 86.35 7277 

InterSSIM 95.5 85.5 85.4 95.6 90.2 90.5 7277 

LaSRC 57.8 89.8 83.5 70.6 74.77 73.8 7277 

MAJA 80.4 98 98.1 78.9 87.92 89.2 3460 

S2cloudless 90.6 91 90 91.6 90.84 90.8 7277 

sen2cor 86.8 81.4 80.6 87.4 83.93 84.1 7277 

 

Table 17: S2 PixBox results - complete dataset including thin clouds, over water surfaces except snow/ice. 

Algorithm PA 
Non-
cloud 

PA 
Cloud 

UA Non-
cloud 

UA 
Cloud 

OA Balanced 
OA 

Number 
of pixels 

ATCOR 92.1 47.7 61.7 86.8 68.94 69.9 4505 

CD-FCNN 99 41.7 60.6 97.8 68.93 70.35 4580 

Fmask 4.0 CCA 92.3 68.2 72.4 90.7 79.63 80.25 4580 

FORCE 86.7 67.5 70.7 84.9 76.63 77.1 4582 

Idepix 86.1 75.5 76.1 85.7 80.55 80.8 4582 

InterSSIM 96.3 56.2 66.6 94.4 75.27 76.25 4582 

LaSRC 75.8 75.8 74 77.6 75.84 75.8 4582 

MAJA 86.9 79.8 75.1 89.6 82.71 83.35 2418 

S2cloudless 96 65 71.3 94.7 79.73 80.5 4582 

sen2cor 86.9 71.8 73.6 85.8 78.94 79.35 4582 
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3.4.1.4 S2 Hollstein et al. 2016 dataset 

As shown in section 3.2.1, the S2 Hollstein dataset has multiple weaknesses, one of these weaknesses 

being the cloud class only consisting of opaque clouds. Another issue was the mixture of actual cirrus 

clouds with other semi-transparent cloud types. Nevertheless, it was decided to use the dataset to 

validate two scenarios. In the first scenario, only opaque clouds are used. The results of this scenario 

have been presented at the CMIX workshop. In the second scenario, the cirrus class of the S2 Hollstein 

dataset set is used additionally. 

Table 18: S2 Hollstein dataset results – only opaque clouds (classes == 50 used for cloud). 

Algorithm PA 
Non-
cloud 

PA 
Cloud 

UA Non-
cloud 

UA 
Cloud 

OA Balanced 
OA 

Number 
of pixels 

ATCOR 95.1 81.8 86.4 93.2 89.07 88.45 1,063,605 

CD-FCNN 97.3 98.3 98.6 96.7 97.76 97.8 1,084,232 

Fmask 4.0 CCA 90.9 99.9 100 89.8 94.94 95.4 1,093,687 

FORCE 90.5 97.4 97.7 89.1 93.56 93.95 1,094,539 

Idepix 86.9 98.2 98.4 85.7 91.92 92.55 1,094,539 

InterSSIM 98 96.8 97.5 97.5 97.48 97.4 1,094,539 

LaSRC 75.6 96.7 96.6 76 84.99 86.15 1,094,539 

S2cloudless 95.3 97.6 98 94.3 96.31 96.45 1,094,539 

sen2cor 91.5 93 94.2 89.8 92.19 92.25 1,094,539 

 

 

Table 19: S2 Hollstein dataset results – opaque clouds (classes == 50) and semi-transparent clouds/cirrus (classes == 40). 

Algorithm PA 
Non-
cloud 

PA 
Cloud 

UA Non-
cloud 

UA 
Cloud 

OA Balanced 
OA 

Number 
of pixels 

ATCOR 95.1 84.6 79.4 96.5 88.61 89.85 1,517,387 

CD-FCNN 97.3 71.1 67.1 97.7 80.98 84.2 1,583,604 

Fmask 4.0 CCA 90.9 91.3 86.6 94.2 91.16 91.1 1,593,059 

FORCE 90.5 88.2 82.6 93.8 89.11 89.35 1,593,911 

Idepix 86.9 94.1 90 92.1 91.33 90.5 1,593,911 

InterSSIM 98 85.7 80.9 98.6 90.4 91.85 1,593,911 

LaSRC 75.6 97.7 95.3 86.7 89.28 86.65 1,593,911 

S2cloudless 95.3 89.2 84.5 96.8 91.54 92.25 1,593,911 

sen2cor 91.5 85.6 79.7 94.3 87.89 88.55 1,593,911 
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Figure 37: Validation results of cloud/clear versus all S2 Hollstein dataset classes for ATCOR 

 
Figure 38: Validation results of cloud/clear versus all S2 Hollstein dataset classes for CD-FCNN 

 
Figure 39: Validation results of cloud/clear versus all S2 Hollstein dataset classes for Fmask 4.0 CCA 
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Figure 40: Validation results of cloud/clear versus all S2 Hollstein dataset classes for FORCE 

 
Figure 41: Validation results of cloud/clear versus all S2 Hollstein dataset classes for IdePix 

 
Figure 42: Validation results of cloud/clear versus all S2 Hollstein dataset classes for InterSSIM 
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Figure 43: Validation results of cloud/clear versus all S2 Hollstein dataset classes for LaSRC 

 
Figure 44: Validation results of cloud/clear versus all S2 Hollstein dataset classes for S2cloudless 

 
Figure 45 Validation results of cloud/clear versus all S2 Hollstein dataset classes for Sen2cor 

 

 

3.4.1.5 L8 GSFC 

Table 20 shows results of cloud detection algorithms for the GSFC L8 dataset. Overall, algorithms 

showed high performance for Landsat 8, though on 6 scenes. 
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Table 20: L8 GSFC results. 

Algorithm PA 
Non-
cloud 

PA 
Cloud 

UA Non-
cloud 

UA 
Cloud 

OA Balanced 
OA 

Number 
of pixels 

ATCOR 99.77 94.84 95.18 99.75 97.33 97.3 864,419 

CD-FCNN 99.99 94.58 94.97 99.99 97.32 97.29 864,419 

Fmask 4.0 CCA 99.96 97.34 97.47 99.96 98.67 98.65 864,419 

FORCE 99.75 96.53 96.71 99.73 98.16 98.14 864,419 

LaSRC 98.15 94.75 95.03 98.04 96.47 96.45 864,419 

 

 

3.4.1.6 L8 Pixbox dataset 

Before looking at the numbers in details, it is important to note, that the analysis was not limited to 

the product area with thermal band coverage. This means these areas, where no thermal information 

is available, but all other bands deliver usable data, have been validated as well. This decision was 

taken, as not all users use the thermal bands in their applications. Some may only use the visible bands. 

For these users a cloud mask covering all pixels of non-thermal bands should be provided. For those 

algorithms limited to thermal data extent, it is advised to have an additional method in place to deal 

with these remaining pixels. Regarding the five compared algorithms, only ATCOR delivered a cloud 

mask covering all pixels, while the others have been limited to the thermal coverage. As validation 

samples had been collected in those non-thermal regions too, ATCOR has a slight head start when 

comparing numbers. This will be put into perspective in section 3.4.3.2. Additionally, it is important to 

notice, the dataset is quite imbalanced between cloud and non-cloud validation samples, with a 3 to 1 

ratio of non-cloud to cloud pixels. In this case, looking at user accuracies, could be a bit misleading, but 

some conclusion can still be drawn from the numbers. 

When analyzing BOA over all surfaces (see Table 21) and comparing it to land (Table 22) and water 

(Table 23), you can see, Fmask 4.0 CCA is performing best disregarding the surface type. But you can 

also see that all algorithms perform a good deal worse over water compared to land. Especially CD-

FCNN and LaSRC having problems detecting clouds over water.  

Additionally, the results reflect the size of a chosen buffer if any was used. It can be observed that 

Fmask 4.0 CCA, FORCE and LaSRC have higher UA non-cloud compared to cloud implying a commission 

error of non-cloud pixels in the cloud mask. For FORCE it is quite higher compared to Fmask 4.0 CCA, 

due to a bigger buffer size, while for LaSRC it is even higher. But this is mostly due to detection errors 

combined with a medium sized buffer. 

Furthermore, the results show especially ATCOR and also CD-FCNN can be valuable for cloud 

conservative applications, delivering a high UA for cloud pixels. However, this is only achieved by 

omitting a good amount of cloud pixels. 
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Table 21: L8 PixBox results - complete dataset over all surfaces. 

Algorithm PA 
Non-
cloud 

PA 
Cloud 

UA Non-
cloud 

UA 
Cloud 

OA Balanced 
OA 

Number 
of pixels 

ATCOR 99.2 73.3 90.8 97.2 92.08 86.25 20127 

CD-FCNN 97.4 59 86.7 89.4 87.19 78.2 19496 

Fmask 4.0 CCA 93.3 82.5 93.6 81.8 90.42 87.9 19496 

FORCE 81.7 76.5 90.2 61.3 80.3 79.1 20128 

LaSRC 87.7 47.8 81.6 59.5 76.75 67.75 20128 

 

Table 22: L8 PixBox results - complete dataset over land surfaces only. 

Algorithm PA 
Non-
cloud 

PA 
Cloud 

UA Non-
cloud 

UA 
Cloud 

OA Balanced 
OA 

Number 
of pixels 

ATCOR 98.5 85.5 93.3 96.5 94.24 92 11027 

CD-FCNN 95 89.5 95.1 89.3 93.26 92.25 10536 

Fmask 4.0 CCA 93.2 94.6 97.4 86.6 93.64 93.9 10536 

FORCE 78.1 86.7 92.3 65.9 80.89 82.4 11028 

LaSRC 78.8 71.8 85.1 62.3 76.48 75.3 11028 
Table 23: L8 PixBox results - complete dataset over water surfaces only. 

Algorithm PA 
Non-
cloud 

PA 
Cloud 

UA Non-
cloud 

UA 
Cloud 

OA Balanced 
OA 

Number 
of pixels 

ATCOR 99.9 49.9 88.3 99.4 89.46 74.9 9100 

CD-FCNN 99.9 3.9 79.9 92.4 80.06 51.9 8960 

Fmask 4.0 CCA 93.4 60.7 90.1 70.6 86.63 77.05 8960 

FORCE 85.5 57.2 88.3 51.1 79.58 71.35 9100 

LaSRC 96.9 2.1 78.9 15.2 77.08 49.5 9100 

 

 

3.4.1.7 L8 Biome 

Table 24 provides a summary of performance metrics for the L8Biome dataset. Results in this table 

should not be used directly for inter-comparing algorithms because of the following reasons: (i) ATCOR 

processed only 86 images out of 96 images, since images in polar regions were removed; (ii) LaSRC 

processed 80 images, since snow scenes were not considered; (iii) all algorithms, except ATCOR, had 

on average 2.4% pixels not classified—those pixels are on the boundary of the Landsat 8 scene, which 

does not have valid values in all spectral bands. 

Table 25 and Table 26 provide a correct inter-comparison between algorithms since the amount of 

reference scenes and pixels used was the same. Results in Table 26 do not include thin clouds in the 

L8Biome data. Not including CD-FCNN, the average BOA was 90.0±1.4% (Table 25) and 91.5±2.1% 

(Table 26). The reason not including CD-FCNN in the analysis is that deep learning algorithm partially 

used L8Biome in the training process. Like in the case of GSFC data, removing thin clouds from the 

reference increases BOA and Cloud-PA accuracies.  
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Table 24: Performance metrics of algorithms using the L8Biome data 

     
Cloud Non-cloud 

Processor % 
cloud 

Total num 
valid pixels 

OA BOA PA UA F PA UA F 

ATCOR 48.3 3,550,231,219 86.8 86.7 83.2 88.8 85.9 90.2 85.2 87.6 

Fmask 4.0 
CCA 47.9 3,963,655,082 90.0 90.2 93.6 86.6 90.0 86.7 93.6 90.0 

FORCE 47.9 3,963,655,082 84.9 85.3 96.0 77.7 85.9 74.6 95.3 83.7 

LaSRC 49.4 3,300,706,977 90.9 90.9 92.7 89.2 90.9 89.1 92.6 90.8 

CD-FCNN 47.9 3,963,655,082 97.3 97.3 97.5 96.8 97.1 97.1 97.7 97.4 

Table 25: Performance metrics of algorithms using the L8Biome data on the same set of Landsat 8 scenes 
     

Cloud Non-cloud 

Processor % 
cloud 

Total num 
valid pixels 

OA BOA PA UA F PA UA F 

ATCOR 49.4 3,300,706,977 88.2 88.2 84.6 90.9 87.6 91.7 85.9 88.7 

Fmask 4.0 
CCA 49.4 3,300,706,977 91.3 91.4 96.2 87.4 91.6 86.5 95.9 91.0 

FORCE 49.4 3,300,706,977 89.4 89.5 96.8 84.2 90.0 82.2 96.3 88.7 

LaSRC 49.4 3,300,706,977 90.9 90.9 92.7 89.2 90.9 89.1 92.6 90.8 

CD-FCNN 49.4 3,300,706,977 97.4 97.4 97.8 96.9 97.4 97.0 97.8 97.4 

Table 26: Performance metrics of algorithms using the L8Biome data on the same set of Landsat 8 scenes without 
considering thin clouds  

     
Cloud Non-cloud 

Processor % 
cloud 

Total num 
valid pixels 

OA BOA PA UA F PA UA F 

ATCOR 42.6 2,909,423,820 89.6 89.2 86.8 88.6 87.7 91.7 90.3 91.0 

Fmask 4.0 
CCA 42.6 2,909,423,820 92.1 93.1 99.7 84.6 91.5 86.5 99.7 92.7 

FORCE 42.6 2,909,423,820 89.0 90.2 98.1 80.4 88.4 82.2 98.3 89.6 

LaSRC 42.6 2,909,423,820 92.8 93.5 97.8 86.9 92.1 89.1 98.2 93.4 

CD-FCNN 42.6 2,909,423,820 98.2 98.4 99.8 96.1 97.9 97.0 99.8 98.4 
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3.4.2 Pixel based inter-dataset comparison & validation dataset comparison 
In this section the balanced overall accuracy (BOA) and user accuracy (UA) for cloud and non-cloud 

pixels of all algorithms are compared across all datasets. The reference datasets are also compared 

with each other based on the performance of the algorithms and characteristics of the reference 

datasets. This comparison has been made because the analysis had shown that the performance of 

each algorithm changes between the different reference datasets. For some algorithms, the 

performance measures varied from very good to reasonably poor. Since the reference datasets are 

used as the truth for the intercomparison, a comparable performance of the algorithms throughout 

the different reference datasets was expected. Therefore, this huge change in performance needs to 

be analyzed and understood, in order to draw more robust conclusions.  

In addition, this very compressed form of presentations allows a good comparison of the single 

algorithms. The three indicators (BOA, UA cloud, and UA non-cloud) have been chosen as they are 

good indicators for the three main user needs: balanced, cloud conservative, non-cloud conservative. 

It was decided to compare results excluding and including thin- transparent clouds, as the detection of 

these types of clouds seems to be challenging for some algorithms. Furthermore, the definition of 

cloud or non-cloud for these thin cloud pixels is disputed widely as it is a smooth transition between 

both states. Depending on the application very thin clouds can even be corrected and do not need to 

be detected. Since the application is not known, clear sky conservative applications have to be 

considered (like aerosol retrieval) and thus the detection of thin clouds has to be analyzed.  

 

3.4.2.1 Sentinel-2 balanced overall accuracy 

Results without thin clouds: 

Comparing the average BOA (see Table 27) of all algorithms between the different reference datasets 

shows a ~10% difference. The algorithms perform a lot better on GSFC and Hollstein, compared to the 

PixBox dataset. The differences can be explained partially. While in the PixBox dataset the thin clouds 

consist only of very thin semi-transparent clouds leaving medium-transparent to opaque clouds in the 

dataset, the Hollstein dataset has only two categories, opaque and transparent (class: cirrus). This 

means, removing transparent clouds leads to only opaque clouds remaining, which are easily detected 

by all algorithms. The GSFC dataset is comparable with the Hollstein dataset in the sense that 

transparent clouds comprise all levels of transparency, not only very thin semi-transparent clouds, 

leading to mostly opaque clouds. The CESBIO dataset did not allow the separation of thin clouds and 

opaque clouds.  

These findings give the following indications: 

1. Removing thin clouds from the datasets and comparing these results to those incl. thin clouds 

give an indication for the ability of each algorithm to detect thin transparent clouds. 

2. The differences in classifying thin clouds and the ability to remove these accordingly from the 

datasets, vary so much, that the datasets become quite incomparable after removal of thin 

clouds. 

Based on the second finding, no inter-dataset comparison is made.  
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Table 27: Comparison of balanced overall accuracies of all algorithms across all (Sentinel-2) reference datasets excluding 
thin clouds. The three best performing algorithms per dataset are highlighted in green and the least performing are 
highlighted in orange. 

Reference dataset comparison 

Algo GSFC PixBox Hollstein Average median Std 

ATCOR 88.20 80.35 88.45 84.35 84.30 3.98 

CD-FCNN 93.60 88.05 97.80 89.74 90.83 6.85 

Fmask 4.0 CCA 96.50 89.90 95.40 92.68 92.65 3.32 

FORCE 96.10 85.80 93.95 91.19 91.43 4.06 

Idepix 92.50 81.00 92.55 88.24 89.70 4.77 

InterSSIM 96.00 90.70 97.40 93.03 93.35 3.83 

LaSRC 97.90 71.00 86.15 84.44 84.43 9.59 

MAJA 92.20 88.30   90.33 90.50 1.60 

S2cloudless 96.10 91.60 96.45 93.24 93.85 3.20 

sen2cor 95.40 84.80 92.25 89.29 88.53 4.67 

Average 94.45 85.15 93.38    

median 95.70 86.93 93.95    

Std 2.71 5.95 3.77    
No. of pixels ~ 40.95 Mio 13,986 1.09 Mio 

   

No. of products 28 29 59    

Average No. Of 
pixels per 
product ~ 1.46 Mio 482 18,552     
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Results incl. thin clouds: 

When including thin clouds (see Table 28) in the analysis the mean performance of the algorithms 

across all datasets decreases around three to seven percent. It also becomes obvious that including 

semitransparent clouds makes the datasets more comparable, as the difference of mean performance 

between the datasets is now only three to seven percent instead of the prior ten percent, and the 

standard deviation of all algorithms across the datasets decreases. 

Including thin clouds also shows that some algorithms seem to have issue with detecting semi-

transparent clouds. The biggest decreases can be found for CD-FCNN, InterSSIM, and S2cloudless. 

While these algorithms performed good without semitransparent cloud, the mean performance across 

the datasets with thin clouds decreases around five to six percent, but still showing an overall good 

performance. 

When evaluating the performance of each algorithm across all reference datasets mean and median 

performance give a good first indication about the general performance. In addition, the standard 

deviation must be considered showing the stability of an algorithm across the reference datasets. 

While for example Fmask 4.0 CCA shows a good (88.66%) mean performance, the performance varies 

only little between the different datasets. On the other side of the spectrum, there are algorithms like 

ATCOR performing not as good (82.28% mean BOA) and additionally vary quite a bit more. The 

standard deviation also helps identifying those algorithms performing disproportionally good on a 

single dataset, like LaSRC on the GSFC dataset or MAJA on the CESBIO dataset. 

Considering BOA as a good first indicator for users with a balanced need on cloud mask performance, 

Fmask 4.0 CCA, FORCE, InterSSIM and S2cloudless should be favored algorithms. But BOA is only one 

indicator to evaluate the usability for balanced performance demands, as a high BOA still can be 

achieved by disproportionally high UA for one class. This will be evaluated in the upcoming sections. 
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Table 28: Comparison of balanced overall accuracies of all algorithms across all (Sentinel-2) reference datasets (incl. thin 
clouds for GSFC, PixBox, and Hollstein and excluding snow for PixBox). The three best performing algorithms per dataset are 
highlighted in green and the least performing are highlighted in orange. 

Reference dataset comparison 

Algo CESBIO GSFC PixBox Hollstein Average median Std 

ATCOR 80.40 81.70 77.15 89.85 82.28 81.05 4.68 

CD-FCNN 79.50 85.40 80.40 84.20 82.38 82.30 2.48 

Fmask 4.0 CCA 88.90 88.40 86.25 91.10 88.66 88.65 1.72 

FORCE 88.90 88.20 82.10 89.35 87.14 88.55 2.94 

Idepix 86.90 86.10 84.00 90.50 86.88 86.50 2.35 

InterSSIM 88.00 87.60 84.85 91.85 88.08 87.80 2.49 

LaSRC 82.70 96.80 74.15 86.65 85.08 84.68 8.14 

MAJA 90.50 80.70 86.10   85.77 86.10 4.01 

S2cloudless 88.80 87.70 86.70 92.25 88.86 88.25 2.09 

sen2cor 84.70 87.80 82.05 88.55 85.78 86.25 2.59 

Average 85.93 87.04 82.38 89.37    

median 87.45 87.65 83.05 89.85    

Std 3.69 4.15 3.94 2.44    

No. of pixels ~ 3.08 Bil 
~ 46.26 
Mio 13,490 1,517,387    

No. of products 30.00 28.00 29.00 59.00    

Average No. Of 
pixels per 
product 

~ 102.94 
Mio ~ 1.65 Mio 465 25,718    
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3.4.2.2 Sentinel-2 user accuracy non-cloud 

Results without thin clouds: 

The results excluding thin clouds in Table 29 are only shown for completeness. As explained already 

in section 3.4.2.1, excluding thin clouds leads to quite incomparable datasets. The results without 

thin clouds can still be used to compare with the results including thin clouds in Table 30. 

Table 29: Comparison of user accuracies for non-cloud classified pixels of all algorithms across all (Sentinel-2) reference 
datasets excluding thin clouds. The three best performing algorithms per dataset are highlighted in green and the least 
performing are highlighted in orange. 

Reference dataset comparison 

Algo GSFC PixBox Hollstein Average median Std 

ATCOR 77.30 83.10 86.40 84.05 84.75 4.49 

CD-FCNN 86.30 90.30 98.60 90.95 89.45 4.64 

Fmask 4.0 CCA 92.30 94.30 100.00 95.13 94.10 2.91 

FORCE 93.00 93.60 97.70 94.83 94.30 1.81 

Idepix 91.30 96.10 98.40 94.70 94.55 2.74 

InterSSIM 91.30 92.20 97.50 93.58 92.75 2.37 

LaSRC 98.10 93.10 96.60 95.60 95.60 1.90 

MAJA 92.70 96.40   95.47 96.40 1.99 

S2cloudless 91.90 94.90 98.00 94.68 94.40 2.20 

sen2cor 90.10 89.60 94.20 91.38 90.85 1.79 

Average 90.43 92.36 96.38    

median 91.60 93.35 97.70    

Std 5.17 3.74 3.83    

No. of pixels 
~ 40.95 
Mio 13,986 1.09 Mio    

No. of products 28 29 59    

Average No. Of 
pixels per 
product ~ 1.46 Mio 482 18,552    
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Results incl. thin clouds: 

When comparing the results for UA non-cloud (Table 30) with the results for BOA (Table 28), it quickly 

becomes obvious, that an overall good performance does not necessarily imply a good performance 

for a user having non-cloud conservative needs. It also shows that algorithms overall not achieving the 

best performance, can still be good at delivering non-cloud observations, with only low levels of cloud 

contamination. Needless to say, algorithms that do not achieve a high overall performance but good 

performance in UA of one class are imbalanced. This imbalance leads to commissioning errors in the 

opposed class. While this behavior should be minimized in general, for a certain set of users (non-cloud 

conservative) this could be favored.  

While InterSSIM for example had an overall good performance, it seems to struggle to provide non-

cloud observations not contaminated by clouds. On the other hand, IdePix, and LaSRC, performing 

average to low in terms of BOA, are quite capable of providing non-cloud observation with low levels 

of cloud contaminations. Fmask 4.0 CCA, and FORCE performing very good in terms of BOA still 

performs quite good for UA non-cloud.  

Thus, for a non-cloud conservative user, considering UA non-cloud as a good indicator, Fmask 4.0 

CCA, IdePix, LaSRC, MAJA, and FORCE should be the favorable algorithms over all datasets.  

Table 30: Comparison of user accuracies for non-cloud classified pixels of all algorithms across all (Sentinel-2) reference 
datasets (incl. thin clouds for GSFC, PixBox, and Hollstein and excluding snow for PixBox). The three best performing 
algorithms per dataset are highlighted in green and the least performing are highlighted in orange. 

Reference dataset comparison 

Algo CESBIO GSFC PixBox Hollstein Average median Std 

ATCOR 89.40 64.00 69.80 79.40 75.65 74.60 9.66 

CD-FCNN 88.60 69.10 72.90 67.10 74.43 71.00 8.44 

Fmask 4.0 CCA 93.90 73.90 81.80 86.60 84.05 84.20 7.27 

FORCE 95.00 74.60 79.50 82.60 82.93 81.05 7.53 

Idepix 93.00 75.10 83.30 90.00 85.35 86.65 6.88 

InterSSIM 93.30 72.50 77.60 80.90 81.08 79.25 7.67 

LaSRC 94.60 94.50 79.80 95.30 91.05 94.55 6.50 

MAJA 97.30 74.40 89.20   86.97 89.20 9.48 

S2cloudless 93.90 73.00 82.10 84.50 83.38 83.30 7.44 

sen2cor 91.60 72.80 78.30 79.70 80.60 79.00 6.85 

Average 93.06 90.43 79.43 82.90    

median 93.60 91.60 79.65 82.60    

Std 2.47 5.17 5.13 7.43    

No. of pixels ~ 3.08 Bil 
~ 46.26 
Mio 13,490 1,517,387    

No. of products 30 28 29 59    

Average No. Of 
pixels per 
product 

~ 102.94 
Mio ~ 1.65 Mio 465 25,718    
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3.4.2.3 Sentinel-2 user accuracy cloud 

Results without thin clouds: 

The results excluding thin clouds in Table 31 are only shown for completeness. As explained already 

in section 3.4.2.1, excluding thin clouds leads to quite incomparable datasets. The results without 

thin clouds can still be used to compare with the results including thin clouds in Table 32. 

 

Table 31: Comparison of user accuracies for cloud classified pixels of all algorithms across all (Sentinel-2) reference datasets 
excluding thin clouds. The three best performing algorithms per dataset are highlighted in green and the least performing 
are highlighted in green and the least performing are highlighted in orange. 

Reference dataset comparison 

Algo GSFC PixBox Hollstein Average median Std 

ATCOR 100.00 81.40 93.20 89.88 89.05 7.25 

CD-FCNN 99.90 87.90 96.70 94.65 95.40 4.41 

Fmask 4.0 CCA 99.70 82.70 89.80 90.75 90.30 6.04 

FORCE 98.50 73.60 89.10 85.28 84.50 9.42 

Idepix 93.60 62.40 85.70 82.15 86.30 11.79 

InterSSIM 99.70 91.30 97.50 95.40 95.30 3.35 

LaSRC 97.80 51.30 76.00 70.68 66.80 18.10 

MAJA 92.70 74.30   79.90 74.30 9.07 

S2cloudless 99.30 86.40 94.30 92.55 92.25 4.80 

sen2cor 99.70 78.60 89.80 89.20 89.25 7.47 

Average 98.09 76.99 90.23    

median 99.50 80.00 89.80    

Std 2.56 11.66 6.19    

No. of pixels 
~ 40.95 
Mio 13,986 1.09 Mio    

No. of 
products 28 29 59    

Average No. Of 
pixels per 
product ~ 1.46 Mio 482 18,552    
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Results incl. thin clouds: 

Similar to the comparison between UA non-cloud with BOA, when comparing the results for UA cloud 

(Table 32) with the results for BOA (Table 28), it again quickly becomes obvious, that an overall good 

performance does not necessarily imply a good performance for a user having cloud conservative 

needs. It also shows again algorithms overall not achieving the best performance, can still be good at 

delivering cloud observations, with only low levels of non-cloud contamination. The limitations that 

come with this tendency have been already described in the previous section. While this imbalanced 

behavior should be minimized in general, for a certain set of users (cloud conservative) this could be 

favored. 

When comparing UA cloud (Table 32) with UA non-cloud (Table 30) adverse performances can be 

recognized. But this is just a logical consequence of an imbalanced behavior. Algorithms like IdePix, 

LaSRC and MAJA, that have shown a good performance for UA non-cloud, show a weak performance 

for UA cloud. In contrast weak UA non-cloud performing algorithms like CD-FCNN or InterSSIM are 

very suitable for cloud conservative users, delivering cloud observations with only little clear 

contaminations. 

With this knowledge of performance of UA non-cloud and cloud, as well as the results for BOA, we 

could revisit the question for best suitability for balanced user requirements. While Fmask 4.0 CCA, 

FORCE, InterSSIM and S2cloudless had shown good BOA performance, the analysis of UA had shown, 

that only Fmask 4.0 CCA and S2cloudless achieve this and still be balanced between cloud and non-

cloud accuracy. 

Table 32: Comparison of user accuracies for cloud classified pixels of all algorithms across all (Sentinel-2) reference datasets 
(incl. thin clouds for GSFC, PixBox, and Hollstein and excluding snow for PixBox). The three best performing algorithms per 
dataset are highlighted in green and the least performing are highlighted in orange 

Reference dataset comparison 

Algo CESBIO GSFC PixBox Hollstein Average median Std 

ATCOR 84.90 100.00 87.10 96.50 92.13 91.80 6.30 

CD-FCNN 94.10 99.90 91.30 97.70 95.75 95.90 3.30 

Fmask 4.0 CCA 90.80 99.70 91.00 94.20 93.93 92.60 3.60 

FORCE 79.90 98.60 84.70 93.80 89.25 89.25 7.35 

Idepix 86.90 93.90 84.70 92.10 89.40 89.50 3.74 

InterSSIM 93.10 99.70 94.50 98.60 96.48 96.55 2.75 

LaSRC 57.60 98.20 71.40 86.70 78.48 79.05 15.35 

MAJA 72.70 93.00 83.20   82.97 83.20 8.29 

S2cloudless 90.20 99.30 91.60 96.80 94.48 94.20 3.72 

sen2cor 88.70 99.70 86.10 94.30 92.20 91.50 5.25 

Average 83.89 98.20 86.56 94.52    

median 87.80 99.50 86.60 94.30    

Std 10.69 2.44 6.16 3.39    

No. of pixels ~ 3.08 Bil 
~ 46.26 
Mio 13,490 1,517,387    

No. of 
products 30 28 29 59    

Average No. Of 
pixels per 
product 

~ 102.94 
Mio ~ 1.65 Mio 465 25,718    
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3.4.2.4 Landsat 8 balanced overall accuracy 

The results for Landsat 8 are a lot harder to interpret compared to Sentinel-2, as for Landsat 8, there 

is a strong difference between the datasets. Especially on the GSFC dataset all algorithms perform 

suspiciously well, with an average performance over 95% over all indicators (BOA, UA cloud, and UA 

non-cloud). This high accuracy suggests the GSFC dataset is relatively simply, especially when looking 

at some examples from the visual analysis (section 3.4.3.2) it will become quite obvious that no 

algorithm has an actual accuracy of above approx. 92%. The PixBox dataset on the other hand seems 

to be a challenging dataset for the algorithms with comparable low performances. 

In section 3.4.3.2 we will show that the PixBox dataset is quite representative, even though it has an 

emphasis on coastal regions. 

Reference dataset comparison 

Algo L8Biome GSFC PixBox Average median Std 

ATCOR 88.20 97.30 86.25 90.58 88.20 4.82 

CD-FCNN  97.29 78.20 90.96 97.29 9.03 

Fmask 4.0 CCA 91.40 98.65 87.90 92.65 91.40 4.48 

FORCE 89.50 98.14 79.10 88.91 89.50 7.78 

LaSRC 90.90 96.45 67.75 85.03 90.90 12.43 

Average 91.48 97.57 79.84    

median 90.90 97.30 79.10    

Std 3.16 0.76 7.15    

No. of pixels ~ 3.3 Bil 864,419 13,490    

No. of products 30.00 28.00 29.00    

Average No. Of 
pixels per 
product ~ 110 Mio 30872 465    

 

3.4.2.5 Landsat 8 user accuracy non-cloud 

 

Reference dataset comparison 

Algo L8Biome GSFC PixBox Average median Std 

ATCOR 85.90 95.18 90.80 90.63 90.80 3.79 

CD-FCNN  94.97 86.70 93.16 94.97 4.71 

Fmask 4.0 CCA 95.90 97.47 93.60 95.66 95.90 1.59 

FORCE 96.30 96.71 90.20 94.40 96.30 2.98 

LaSRC 92.60 95.03 81.60 89.74 92.60 5.84 

Average 93.70 95.87 88.58    

median 95.90 95.18 90.20    

Std 4.25 1.03 4.12    

No. of pixels ~ 3.3 Bil 864,419 13,490    

No. of products 30.00 28.00 29.00    

Average No. Of 
pixels per product ~ 110 Mio 30872 465    
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3.4.2.6 Landsat 8 user accuracy cloud 

 

Reference dataset comparison 

Algo L8Biome GSFC PixBox Average median Std 

ATCOR 90.90 99.75 97.20 95.95 97.20 3.72 

CD-FCNN  99.99 89.40 95.43 96.90 4.45 

Fmask 4.0 CCA 87.40 99.96 81.80 89.72 87.40 7.59 

FORCE 84.20 99.73 61.30 81.74 84.20 15.78 

LaSRC 89.20 98.04 59.50 82.25 89.20 16.48 

Average 89.72 99.49 77.84    

median 89.20 99.75 81.80    

Std 4.22 0.73 15.06    

No. of pixels ~ 3.3 Bil 864,419 13,490    

No. of products 30.00 28.00 29.00    

Average No. Of 
pixels per product ~ 110 Mio 30872 465    
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3.4.3 Visual analysis 
The goal of the visual analysis was to confirm or disprove the findings from the statistical analysis 

(pixel-based validation) and to identify specific behaviors or shortcomings of each algorithm. The 

later part is important for the algorithm producers to get feedback on certain features of the 

algorithm they might not be aware of, like systematic false detections, systematic under detections 

or misclassifications of certain surfaces. 

As the PixBox dataset for Sentinel-2 and Landsat 8 has been the dataset giving the most detail in 

terms of additional information for each pixel, these datasets have been used for visual analysis. 

3.4.3.1 S2 Pixbox dataset 

 

S2A_MSIL1C_20170726T102021_N0205_R065_T33VVE_20170726T102259:  

• Thin to medium semi-transparent clouds over water and land 

• Small opaque cumulus clouds over land 
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S2A_MSIL1C_20180222T012651_N0206_R074_T54TWN_20180222T031349 

• Opaque clouds over snow 

 

 

 



pg. 82 
 

 

 



pg. 83 
 

S2A_MSIL1C_20170629T103021_N0205_R108_T31TFJ_20170629T103020 

• Opaque clouds to semi-transparent clouds and urban 
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S2A_MSIL1C_20170629T103021_N0205_R108_T31TFJ_20170629T103020 

• Opaque clouds to semi-transparent clouds over water 
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3.4.3.2 L8 Pixbox dataset 

One interesting finding from the visual analysis of the Landsat 8 pixbox data was ATCOR being the only 

algorithm providing a cloud detection for all the products pixels, incl. the areas without thermal 

coverage. This finding is impossible to make when doing only a quantitative assessment. Nevertheless, 

this helps to put the results from the quantitative (confusion matrix) analysis in a relation, since the 

overall performance of ATCOR appears to be average with a very good amount of omission of clouds. 

Thus, ATCOR benefits of these additionally collected clouds in the non-thermal part of the product. 

Another interesting finding was the very comparable detection of clouds from Fmask and FORCE, with 

FORCE having a higher commission error, due to a bigger buffer and over detection of bright surfaces. 

While the omission error of clouds seemed very much alike. This was surprising, as the numbers 

presented in sections 3.4.1.6 and 3.4.2.5 implied differently, with FORCE having a bit lower 

performance. This seems to be caused mostly by the size of the buffer, being much bigger for FORCE, 

as shown in Figure 46. 

 

Figure 46: Comparison of Fmask 4.0 CCA and FORCE cloud buffer size 

Visual analysis has also revealed semi-transparent clouds mostly being collected over water for the 

validation dataset. These semi-transparent clouds mostly consist of cirrus clouds This circumstance 

explains the low performance of CD-FCNN and LaSRC over water, shown in Table 23 of section 3.4.1.6, 

as both algorithms seem not to be using the cirrus band (1370 nm) for cloud detection. The visual 

analysis has shown that the performance of CD-FCNN and LaSRC, when neglecting cirrus clouds, is a 

lot better over water as the numbers in the confusion matrix have shown. Neglecting cirrus clouds, the 

performance is comparable to ATCOR. 
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The following main behaviors have been identified for each algorithm. 

ATCOR: 

Findings: 

• Cloud conservative approach. Only little commission of non-clouds as cloud. 

• Problem of detection small clouds, especially medium to thick semi-transparent cumulus 

and stratocumulus 

• Missing fully opaque cloud parts 

• In general under-detection of clouds 

Recommendations: 

• A buffer could improve performance quite a lot. 
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CD-FCNN: 

Findings: 

• biggest issue semi-transparent clouds 

• weak performance over water 

• cloud borders are mostly omitted 

Recommendations: 

• A buffer could improve the performance quite a bit 
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Fmask 4.0 CCA: 

Findings: 

• good detection of smaller clouds 

• issue with mixed land/water pixels: coastal areas, along rivers 

Recommendations: 

• Nothing specific 
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FORCE 

Findings: 

• good detection of smaller clouds 

• some commission error of bright surfaces (e.g., urban and beaches) 

• good amount of commission error of non-cloud as cloud, due to large buffer 

Recommendations: 

• Potentially decreasing the buffer size a tiny bit to lower commission error. 
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LaSRC 

Findings: 

• weak performance in detecting semi-transparent clouds, especially over water. 

• commissioning error of agricultural areas and urban 

Recommendations: 

• Add an additional snow flag 
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LC81960302014022 

• Semi-transparent clouds over land and water 

• Cumulus, stratocumulus, and altocumulus floccus clouds over water 
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Figure 47: Algorithms’ performance for LC81960302014022 
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LC81970182015080 
• Non-cloud snow covered land surface 

• Bands of cumulus clouds over snow free land surface 
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Figure 48: Algorithms' performance on LC81970182015080 over snow 
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Figure 49: Algorithms' performance on LC81970182015080; No detection of clouds outside thermal band coverage except for ATCOR 
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LC81980232014276 

• Cumulus, stratocumulus, and altocumulus floccus clouds over land and water 

• Stratus and cirrus clouds over land 
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Figure 50: Algorithms' performance on LC81980232014276 
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Figure 51: Algorithms' performance on LC81980232014276 (details) 
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LC82030242014103 

• Cumulus, stratocumulus, altocumulus 

• Mostly land with coastal water (high TSM) 
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Figure 52: Algorithms' performance on LC82030242014103 
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LC82040212013251 
• Stratus, and multiple types of cumulus over land 

• Altostratus and cirrus clouds over water 
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Figure 53: Algorithms' performance on LC82040212013251 
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Figure 54: Algorithms' performance on LC82040212013251, detailed view 
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4 Feedback from the second CMIX workshop 
In this section we will summarize the feedback we had collected during the second CMIX workshop in 

ESRIN. 

The following 7 points are the main results: 

1. All 5 validation datasets (VD) have different strengths and weaknesses -> results vary 

depending on the validation dataset 

a. Subjectivity of detecting/photo-interpreting clouds, especially thin clouds, in VD 

should be minimized, e.g. though the use of a network of sky images 

2. CMIX had shown that there is no clear superiority of any methodology (Spectral tests vs. AI, 

mono vs. multitemporal)  

3. A buffer and its size have a strong influence on the validation results -> Bigger buffer = better 

results for UA non cloud, but not for BOA. 

4. All results show high accuracies (> 80%) for all processors -> cloud screening is good but can 

be improved.  

5. It might be better to use ‘UA clear’ as a quality indicator compared to OA (Without neglecting 

the commission errors), but it also depends on the application. Also, in case of imbalanced 

classes, the balanced OA should be considered as well. 

6. Thin semi-transparent clouds and cloud boundaries are an issue for mostly all algorithms. -> 

How to define a transparent cloud? boundary of a cloud? 

7. The validation dataset and method does not allow for detecting systematic errors. 

 

During discussion with the participants the following points had been discussed that should be 

considered by the algorithm developers or by the organization team for a next CMIX: 

1. Usage of a buffer seems to be beneficial. 

• S2 bands look at surface under different angles, leading to uncertainty at the cloud edge. 

• Adjacency effect next to a cloud also impacts the signal. 

• Buffer included in cloud mask versus extra mask. 

2. Cloud class definition 

• Cloud class should be uniquely defined, and consistent between algorithms‘ flag and 

validation data. 

• Cloud/no cloud too simplistic; more refined (at least slightly) should be used. 

3. Validation data sets (VD) 

• VD critically influences the results. 

• Current VD were used because they were available, some having limitations; it would be 

better to have a dedicated VD for CMIX purpose. 

• We should compare the cloud masking in scenes available in different VDs. 

• Identify critical scenes in the VD (biggest differences in results between algorithms). 

• Dedicated VDs are needed for a CMIX II. 
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4. Cloud shadow and terrain shadow are important to consider, including the validation 

dataset. 

5. Systematic errors should be identified, e.g. over bright surfaces20 

6. Critical cases should get special attention: clouds over snow, urban, coastline, desert, … 

7. It was suggested to linking CMIX with ACIX, to prove the „fitness for purpose“ of the cloud 

masking algorithms. This means the clouds masks would be used as input for an atmospheric 

correction.  

 

  

 
20 https://www.mdpi.com/2072-4292/10/10/1570 
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5 Consolidation of results 
The goal of CMIX was the evaluation and intercomparison of multiple cloud screening algorithms. 

Before consolidating the results of the previous chapters, we need to step back a bit to reevaluate 

purpose, methods and datasets and see how they are fit to serve the purpose. To do this we need to 

answer a few questions: 

1. Who is the addressee of the analysis?  

2. What are the needs of the addressee? 

3. Which indicators of the CMIX analysis are suitable to address these needs? 

4. Are there more indicators that have not been considered that are important within real world 

application scenarios? 

 

In the context of CMIX the first question cannot be answered clearly, as the results are important to 

users as well as to the producers. For the producers, the results give feedback on performance and 

potential sources for improvement. For the users, they can be a guidance for selecting a cloud mask. 

Nevertheless, the user’s perspective should be the priority in any case, as the producers should aim at 

delivering the best cloud mask possible for the users. To evaluate this, we need to address the second 

question. 

The needs of the users vary depending on the application. In terms of cloud masking there are three 

major preferences: cloud conservative, non-cloud conservative and balanced. Non-cloud conservative 

approaches are mostly needed for applications that do not allow cloud contamination (e.g., the remote 

sensing of land-, sea- and ice surface temperatures, determination of vegetation biophysical variables, 

phenology of vegetation status, elaboration of monthly composites of surface reflectance, 

determination of total column water vapor or of aerosol optical properties), while cloud conservative 

approaches are mostly needed for cloud remote sensing applications. Needs for balanced approaches 

are the hardest to serve. They are needed where each pixel of a product is important. This can only be 

achieved with a balanced overall good performance of a cloud mask, while the previous two needs can 

be achieved by accepting a certain amount of omission error.21 

The main source of analysis for CMIX has been validation datasets which consist of manually or 

automatically classified samples used as the “truth” for comparison with the algorithms’ results. For 

comparing the algorithms’ results with the “truth” standard confusion matrices have been used. 

Confusion matrices provided different measures to quantify the performance of a classification. It gives 

performance indicators for both sides, the users as well as producers for each analyzed class, as well 

as information on the overall performance of an algorithm/classification. If we revisit the finding of the 

previous paragraph (needs) and consult the definitions of confusion matrix indicators (section 3.3.1), 

it becomes obvious that user accuracies are of great importance, as well as overall accuracies to 

analyze the balance of an algorithm. In addition to this method, single products have been analyzed 

visually, to get a better impression of the performance of the algorithms in the spatial domain. While 

these two methods are sufficient to answer the above described needs reasonably well, some 

questions cannot be answered, as: 1) are there any systematic detection issues of any algorithm?, 2) 

are detection issues bound to specific land cover types?, 3) do high cloud frequencies have influence 

 
21 As Sentinel-2 provides time series of surface reflectances with a good revisit, it might sometimes be 
preferable to wrongly discard a cloud free observation than to include a thin cloud in reflectance time series 
that might reduce the accuracy of the analyses and retrievals. 
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on temporal based cloud detection algorithms?, or 4) what is the actual effect of differences in cloud 

screening on real world applications? 

When talking about real world applications, it becomes obvious that the current CMIX did not cover 

this scenario. The used comparison methods and indicators are limited to comparing the outputs 

(cloud masks) to evaluate the performance. While this is a fair method to start with, it does not cover 

different scenarios in which these algorithms can potentially be used. And thus, it gives no indication 

of costs for the users. You could think about four different potential user types with different “cost 

functions”: 

1. Desktop user working on single products 

2. Desktop user within a cloud environment 

3. Private processing cluster 

4. Big data processing / service in the cloud (AWS, GE, ESA TEPs) 

Depending on data needs (multi-temporal vs. mono-temporal approaches) and processing time22, the 

cost for processing will vary for each user type. 

Desktop user working locally. 

While processing time might be not a big cost factor for a locally working user, if smaller 

amounts of products are processed, the need for long time series could be demanding, as this 

type of user usually downloads the products manually. 

Desktop user within a cloud environment 

Working in a cloud environment usually implies being close to your data, therefore bigger 

amounts of input data (time series) might be a smaller cost factor for this type of user, while 

processing time usually is, when CPU time is charged. 

Private processing cluster 

These types of clusters usually combine the issues of the first two examples. As usual a great 

amount of data is processed and data is stored locally, each additional download of later 

unused products generates costs, as well as smaller increases of processing time have a bigger 

impact, when processing big amounts of data. 

Big data processing / service in the cloud (AWS, GE, ESA TEPs) 

This fourth type of user is mostly affected by processing time and consequentially costs. 

 

Besides these cost factors, the technical implementation and operations aspects of the algorithms 

has not been evaluated. For example:  

1. How easy is the algorithm implemented in my environment?  

2. Which operating systems are supported?  

3. Is it GUI based, script based or both? 

4. Does it provide an API to be integrated in other applications? 

5. Is it free and open available or must be purchased? 

 

 
22 In this section to be understood as CPU time 
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Note:  

Products from some algorithms are already available for end users to consume on various 

platforms, like MAJA cloud masks on https://www.theia-land.fr/en/product/sentinel-2-

surface-reflectance/, sen2cor’s and s2cloudless’ cloud masks are available on Sentinel Hub  

(https://www.sentinel-hub.com/ ) and Google Earth Engine 

(https://earthengine.google.com/), as well as sen2cor being provided as ESA official L2A 

product via Copernicus open access hub (https://scihub.copernicus.eu/). 

Nevertheless, all platforms do not provide cloud mask for the entire globe for the entire time 

span of L1C product availability. 

https://www.theia-land.fr/en/product/sentinel-2-surface-reflectance/
https://www.theia-land.fr/en/product/sentinel-2-surface-reflectance/
https://earthengine.google.com/
https://scihub.copernicus.eu/
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With these four questions (audience, needs, indicators, real-world) addressed we can try to 

consolidate the finding from this first CMIX exercise. 

• Pixel based analysis had given us: 

o a first insight into the functionality, strengths, and weaknesses of all compared 

algorithms, 

o an overview of the strengths and especially the weaknesses of the used validation 

datasets 

o A good basis to better design the next CMIX 

• The visual analysis had shown that: 

o Specific algorithm behaviour cannot always be identified using statistical means. 

o Even if statistic results are good, issues of a method can be existing that are 

unfavourable for certain applications. 
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6 Conclusion and lessons learned 
CMIX was a valuable lesson for the participants as well as for the organization team. It was the first 

exercise of its kind, and helped to better understand what is needed to compare and validate different 

cloud masks. Especially shortcomings and limitations in used reference datasets have been identified, 

while the exercise still revealed the differences in the compared cloud screening algorithms. Therefore, 

it helped to identify strengths and weaknesses of single algorithm/method.  

A lot was learned from this first exercise, which will be used to prepare CMIX II. Therefore, 

recommendations for a next exercise are given in the following chapter. 

 

7 Recommendations 
Results and lessons learned from CMIX-I provide a good foundation for future activities for improving 

practices related to the development and validation of cloud masking algorithms for passive optical 

satellite imagery. 

The first area of improvements should aim at providing, first of all, on a definition of “cloud” that is 

passed beforehand to participants and validation dataset originators. Ideally this would be an objective 

definition of clouds, which would include a numerical metric. As results from CMIX-I showed existing 

validation datasets varied in how a cloud was defined, and it influenced performance of the algorithms. 

One potential metric to define the cloud would be the cloud optical thickness, for example. However, 

this poses the questions at which wavelength to be defined. While there was a consensus between 

algorithms and developers in defining thick non-transparent clouds, there was a disagreement 

(sometimes by design and depending on the intended applications) in transparent (semi-transparent) 

clouds, such as cirrus and stratus, and cloud edges. Also, the effect of those clouds can vary with 

wavelengths, which adds complexity to the analysis.  

Based on the cloud definition, the second area of improvements would include generation of new 

reference/validation datasets. The strengths and weaknesses of existing cloud reference datasets were 

thoroughly analyzed and discussed within this report, and new datasets should substantially address 

those weaknesses. Some of the recommendations include: 

• Implementing consistently the cloud definition, and adding cloud shadows to the analysis. 

Recommended practices for labelling clouds shall be developed and implemented for new 

datasets, whether through visual interpretation or ground measurements or ancillary data 

(e.g. geostationary satellites). Clouds shadows should be also part of the analysis, since 

inaccurate cloud mask can lead to substantial artefacts in the downstream products. 

• Increasing the number of sites of ground-based imagery of the sky and use them in 

coordination with Aeronet measurements. 

• Acquire multiple datasets over the same area to analyse consistent errors in cloud detection. 

This would enable temporal metrics to be exploited when assessing the efficiency of cloud 

masks. 

The third set of activities should focus on expanding the analysis framework, which would include: 

• Sample-based approach versus area-based approach, when comparing reference cloud mask 

with the predicted one. The problem with an area-based approach is that more weights would 

be given to large clouds (which cover the larger area), whereas smaller clouds might have a 

small impact on the performance metrics. But sampled based approaches can also miss some 
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specific land cover features, and sometimes do not address the limits of the clouds. Both 

approaches are therefore necessary. 

• Temporal analysis of cloud masks over the same area. Originally planned for CMIX-I, the idea 

of using temporal metrics was abandoned, since no reference data (except GSFC which were 

assisted with sky imagery and Aeronet measurements) was available for these purposes. 

Nevertheless, undetected clouds add noise on time series, therefore it is possible to evaluate 

the noise on time series, and compute the contribution of different cloud masks to this noise. 

• Application-based approach to cloud validation. One way to analyse efficiency of the 

cloud/shadow masks is to “validate” them indirectly within the downstream products. An 

example can include a generic land cover mapping workflow, when the same set of satellite 

data will be processed by various cloud detection algorithms, and used an input to the 

classification algorithm. The derived land cover maps will be validated using the same 

validation data and inter-compared. 

And finally, CMIX-I was limited to Landsat 8 and Sentinel-2 data. Future activities could include adding 

coarse resolution data, such as MODIS, VIIRS, Sentinel-3, and commercial very high spatial resolution 

satellites, such as Planet. 

 

  



pg. 114 
 

8 References 
 

Baetens, L., Desjardins, C., & Hagolle, O. (2019). Validation of Copernicus Sentinel-2 Cloud Masks 

Obtained from MAJA, Sen2Cor, and FMask Processors Using Reference Cloud Masks Generated with a 

Supervised Active Learning Procedure. Remote Sensing, 11, 433. 

Baetens Louis, & Hagolle Olivier. (2018). Sentinel-2 reference cloud masks generated by an active 

learning method [Data set]. Zenodo. http://doi.org/10.5281/zenodo.1460961 

Claverie, M., Ju, J., Masek, J. G., Dungan, J. L., Vermote, E. F., Roger, J. C., ... & Justice, C. (2018). The 

Harmonized Landsat and Sentinel-2 surface reflectance data set. Remote Sensing of Environment, 219, 

145–161. 

Congalton, R.G. 1991: A review of assessing the accuracy of classifications of remotely sensed data. 

Remote Sensing of Environment. 37: 35-46. 

Congalton, R.G.; Green, K. 1999. Assessing the accuracy of remotely sensed data: principles and 

practices. Boca Raton, FL: Lewis Publishers. 137 p. 

Congalton, R.G. 2007: Thematic and Positional Accuracy Assessment of Digital Remotely Sensed Data. 

In: McRoberts, Ronald E.; Reams, Gregory A.; Van Deusen, Paul C.; McWilliams, William H., eds. 

Proceedings of the seventh annual forest inventory and analysis symposium; October 3-6, 2005; 

Portland, ME. Gen. Tech. Rep. WO-77. Washington, DC: U.S. Department of Agriculture, Forest Service: 

149-154. 

Doxani, G., Vermote, E., Roger, J. C., Gascon, F., Adriaensen, S., Frantz, D., ... & Louis, J. (2018). 

Atmospheric correction inter-comparison exercise. Remote Sensing, 10(2), 352. 

Foga, S., Scaramuzza, P. L., Guo, S., Zhu, Z., Dilley Jr, R. D., Beckmann, T., ... & Laue, B. (2017). Cloud 

detection algorithm comparison and validation for operational Landsat data products. Remote Sensing 

of Environment, 194, 379-390. 

Frantz, D. (2019). FORCE—Landsat + Sentinel-2 Analysis Ready Data and Beyond. Remote Sensing, 11, 

1124. DOI: 10.3390/rs11091124 

Frantz, D., Haß, E., Uhl, A., Stoffels, J., & Hill, J. (2018). Improvement of the Fmask algorithm for 

Sentinel-2 images: Separating clouds from bright surfaces based on parallax effects. Remote Sensing 

of Environment, 215, 471-481. DOI: 10.1016/j.rse.2018.04.046 

Frantz, D., Röder, A., Stellmes, M., & Hill, J. (2016). An Operational Radiometric Landsat Preprocessing 

Framework for Large-Area Time Series Applications. IEEE Transactions on Geoscience and Remote 

Sensing, 54, 3928-3943. DOI: 10.1109/TGRS.2016.2530856 

Frantz, D., Röder, A., Udelhoven, T., & Schmidt, M. (2015). Enhancing the Detectability of Clouds and 

Their Shadows in Multitemporal Dryland Landsat Imagery: Extending Fmask. IEEE Geoscience and 

Remote Sensing Letters, 12, 1242-1246. DOI: 10.1109/lgrs.2015.2390673 

Gascon, F., Bouzinac, C., Thépaut, O., Jung, M., Francesconi, B., Louis, J., ... & Languille, F. (2017). 

Copernicus Sentinel-2A calibration and products validation status. Remote Sensing, 9(6), 584. 

Hagolle, O., Huc, M., Pascual, D. V., & Dedieu, G. (2010). A multi-temporal method for cloud detection, 

applied to FORMOSAT-2, VENµS, LANDSAT and SENTINEL-2 images. Remote Sensing of Environment, 

114(8), 1747-1755. 



pg. 115 
 

Hagolle Olivier, Huc Mireille, Desjardins Camille, Auer Stefan, & Richter Rudolf. (2017, December 7). 

MAJA Algorithm Theoretical Basis Document (Version 1.0). Zenodo. 

http://doi.org/10.5281/zenodo.1209633 

Holben, B. N., Eck, T. F., Slutsker, I. A., Tanre, D., Buis, J. P., Setzer, A., ... & Lavenu, F. (1998). AERONET—

A federated instrument network and data archive for aerosol characterization. Remote Sensing of 

Environment, 66(1), 1–16. 

Hollstein, A., Segl, K., Guanter, L., Brell, M., & Enesco, M. (2016). Ready-to-use methods for the 

detection of clouds, cirrus, snow, shadow, water and clear sky pixels in Sentinel-2 MSI images. Remote 

Sensing, 8(8), 666. 

Kotchenova, S. Y., Vermote, E. F., Matarrese, R., & Klemm Jr, F. J. (2006). Validation of a vector version 

of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: Path 

radiance. Applied Optics, 45(26), 6762–6774. 

López-Puigdollers, D., Mateo-García, G., & Gómez-Chova, L. (2021). Benchmarking Deep Learning 

Models for Cloud Detection in Landsat-8 and Sentinel-2 Images. Remote Sensing, 13(5), 992. 

Mateo-García, G., Laparra, V., López-Puigdollers, D., Gómez-Chova, L., (2020) Transferring deep 

learning models for cloud detection between Landsat-8 and Proba-V. ISPRS J. Photogramm. Remote 

Sens., 160, 1–17. 

Qiu, Shi, et al. "Improving Fmask cloud and cloud shadow detection in mountainous area for Landsats 

4–8 images." Remote Sensing of Environment 199 (2017): 107-119. 

Qiu, Shi, Zhe Zhu, and Binbin He. "Fmask 4.0: Improved cloud and cloud shadow detection in Landsats 

4–8 and Sentinel-2 imagery." Remote Sensing of Environment 231 (2019): 111205. 

Richter, R., “A fast atmospheric correction algorithm applied to Landsat TM images”, Int. J. Remote 

Sensing, Vol. 11, 159-166 (1990). 

Richter, R., Wang. X., Bachman, M., and Schläpfer, D., “Correction of cirrus effects in Sentinel-2 type of 

imagery“, Int. J. Remote Sensing, Vol. 32, 2931-2941 (2011). 

Skakun, S., Vermote, E. F., Artigas, A. E. S., Rountree, W. H., & Roger, J. C. (2021). An experimental 

sky-image-derived cloud validation dataset for Sentinel-2 and Landsat 8 satellites over NASA 

GSFC. International Journal of Applied Earth Observation and Geoinformation, 95, 102253. 

Skakun, S., Vermote, E., Roger, J. C., & Justice, C. (2017). Multispectral misregistration of Sentinel-2A 

images: Analysis and implications for potential applications. IEEE Geoscience and Remote Sensing 

Letters, 14(12), 2408–2412. 

Skakun, S., Vermote, E. F., Roger, J. C., Justice, C. O., & Masek, J. G. (2019). Validation of the LaSRC 

cloud detection algorithm for Landsat 8 images. IEEE Journal of Selected Topics in Applied Earth 

Observations and Remote Sensing, 12(7), 2439–2446. 

Vermote, E., Justice, C., Claverie, M., & Franch, B. (2016). Preliminary analysis of the performance of 

the Landsat 8/OLI land surface reflectance product. Remote Sensing of Environment, 185, 46–56. 

Vermote, E. F., Tanré, D., Deuze, J. L., Herman, M., & Morcette, J. J. (1997). Second simulation of the 

satellite signal in the solar spectrum, 6S: An overview. IEEE Transactions on Geoscience and Remote 

Sensing, 35(3), 675–686. 

http://doi.org/10.5281/zenodo.1209633


pg. 116 
 

Vermote, E. F., and S. Kotchenova (2008), Atmospheric correction for the monitoring of land surfaces, 

Journal of Geophysical Research-Atmospheres, 113(D23). 

Vermote, E., Justice, C., & Csiszar, I. (2014). Early evaluation of the VIIRS calibration, cloud mask and 

surface reflectance Earth data records. Remote Sensing of Environment, 148, 134–145. 

Zhu, Zhe, Shixiong Wang, and Curtis E. Woodcock. "Improvement and expansion of the Fmask 

algorithm: Cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 

images." Remote Sensing of Environment 159 (2015): 269-277 

Zhu, Z., & Woodcock, C.E. (2012). Object-Based Cloud and Cloud Shadow Detection in Landsat 

Imagery. Remote Sensing of Environment, 118, 83-94. DOI: 10.1016/j.rse.2011.10.028 

 

 

  



pg. 117 
 

9 Annex 
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9.1 S2 Pixbox Detailed results 

9.1.1  Complete dataset – no thin clouds 
Figure 55 and Figure 56 show the confusion matrices for all algorithms on the complete dataset but excluding thin clouds. 

   

  
 

Figure 55: Confusion matrices for the complete dataset without thin clouds – part 1 
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Figure 56: Confusion matrices for the complete dataset without thin clouds – part 2 
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9.1.2 Detailed view of classifications over different clear surfaces 

 

 

 

 

Figure 57: Detailed view of clear in-situ classes classified as cloud or clear by the algorithms – part 1 
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Figure 58: Detailed view of clear in-situ classes classified as cloud or clear by the algorithms – part 2 
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