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1 Introduction 
 

1.2 Purpose and Scope 
This document describes the algorithmic and theoretic basis of the lunar irradiance model. It 
includes the method to adjust the model parameters based on irradiance measurements. It also 
describes how to propagate the uncertainties throughout the entire model chain. 

 

1.3 Applicable and reference documents 
 

1.3.1 Applicable Documents 
The following applicable documents are those specification, standards, criteria, etc. used to define 
the requirements of this representative task order.   

Number Reference 
  
[AD1] ESA-TECEEP-SOW-002720. Lunar spectral irradiance measurement and modelling 

for absolute calibration of EO optical sensors. 
  
[AD2] Deliverable-1 

 
 

[AD3] Deliverable-2 
 
 

[AD4] Deliverable-3 
 

  
[AD5] Deliverable-4 
  
[AD6] Deliverable-6 

 
 

 
1.3.2 Reference Documents 
Reference  documents  are  those  documents  included  for  information  purposes;  they  provide  
insight  into  the  operation,  characteristics,  and  interfaces,  as  well  as  relevant  background 
information. 

 
Number Reference 
  
[RD1] H.H. Kieffer and T.C. Stone. The Spectral Irradiance of the Moon. 2005. The 

American Astronomical Society. DOI:10.1086/430185. 
  
[RD2] Apollo 16 Samples  from http://www.planetary.brown.edu/ 
  
[RD3] Numerical Recipes in C, William H. Press . . . [et al.]. – 2nd ed. 
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[RD4] SPICE : https://naif.jpl.nasa.gov/naif/documentation.html 
  
[RD5] Optical measurements of the Moon as a tool to study its surface, Y. Shkuratov et 

all, 2011 
 

[RD6] MODIS and SeaWIFS On-Orbit Lunar Calibration, Sun J. et All, 2008 
 

[RD7] On-orbit Radiometric Calibration Over Time and Between Spacecraft Using the 
Moon, Kieffer H. et all, 2003  
 

[RD8] Lunar Calibration Of MSG/SEVIRI Solar Channels, Viticchie et all, 2014 
 

  
 

1.4 Glossary 
1.4.1 Abbreviations 
 

Abbreviation Stands For Notes 
   
   
ESA European Space Agency Project customer 
   
NPL National Physical Laboratory Project partner 
   
J2000 Celestial reference frame for coordinates  
   
JPL Jet Propulsion Laboratory  
   
NAIF Navigation and Ancillary Information Facility  
   
ROLO Robotic Lunar Observatory  
   
SPICE Spacecraft Planet Instrument C-matrix Events  
   
SWIR Short-Wave InfraRed  
   
USGS U. S. Geological Survey  
   
UVa University of Valladolid Project partner 
   

VITO 
Flemish Institute for Technological Research 
(Vlaamse Instelling voor Technologisch 
Onderzoek) 

Project partner 

   
VNIR Visual and Near InfraRed  
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2 Lunar irradiance model derivation 
 

2.1 Rationale 
The moon has already been observed for thousands of years. These observations have, in recent years, 
evolved into detailed and automated radiometric measurements.  Different measurements from 
various locations are being carried out:  ground-based sensors, satellite sensors and even lunar 
orbiting sensors.  

With the Robotic Lunar Observatory (ROLO), USGS has acquired  85000+ images of the moon, during 
a period of almost 10 years [KIEFER and STONE,2005]. The moon-disk-integrated irradiance was 
measured in 32 bands of which 23 are VNIR and 9 SWIR. About 1000 images per spectral band were 
used to fit the lunar spectral reflectance ROLO model. This reflectance model can be used to simulate 
any lunar irradiance up to 90 degrees phase angle. Many inter-comparisons between the ROLO model 
and e.g. space-born sensors have revealed a possible discrepancy in absolute levels of the model 
([RD6][RD7][RD8]). These studies have shown a possible underestimation of the ROLO model by 5 % 
to 15 % in the VNIR and SWIR with respect to the satellite-based lunar observations. Some studies also 
indicate that there is a model dependency on the phase angle [RD8]. 

In this project, a new lunar irradiance model has been developed, based upon lunar measurements 
acquired with the CE318-TP9 instrument (also referred to as the 1088 instrument) . The development 
of the new model is based on the analytical formulation of the ROLO model with new estimates of the 
calibration parameters. However, where needed, the formulation was adapted.  
At the UVa institute in Izaña (Tenerife), a second CIMEL instrument has been used to measure the 
lunar irradiance (also referred to as 933). This instrument was deployed during the period 2016 and 
2017. New measurements with the 933 instrument have been conducted in the period 2018 and 2019, 
ensuring overlap between the two instruments. 

The measurements of this instrument are used in this study to investigate the feasibility of the 
derivation of a new lunar irradiance model. The final model however will consist of 1088 results only, 
once sufficient measurements have been acquired. At the time of writing, measurements with the 
1088 instrument are available for 2 years, from 03/2018 until 06/2018. About 160 irradiance 
measurements have been recorded. Added to that the 933 measurements, about 550 measurements 
per spectral in total are used in this study. 

 

 

2.2 Lunar model definition 
The model is based on the lunar irradiance measurements from the CE318-TP9 “1088” instrument 
(see D2, D3, D4 and D6  from this study) 

The model is detailed in equation 1. It is a slightly modified version of the USGS ROLO lunar model 
[RD1].   

The only difference is that for each spectral band in the model an independent set of c-coefficients 
has been defined, while in the original model, the c-coefficients are identical for all bands. 
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k is model spectral band,  

A is the lunar reflectance, ln(A) the natural logarithm of A, 

g is the absolute phase angle [radians],  

𝜃 selenographic latitude observer [degrees], 

𝜙 selenographic longitude of the observer [degrees], 

𝛷 selenographic longitude of the Sun [radians], 

𝐶 = !"#
$

  conversion radians to degrees. 

 

The reflectance model can be split-up in four different sections.   

The basic photometric function is represented by the first polynomial depending solely on the phase 
angle. It is a wavelength-dependent  third degree polynomial, described with the 𝑎%&  coefficients.  

The variations of the reflectance of the moon due to changes in the actual area of the Moon 
illuminated by the sun and driven by changes in the distribution of maria and highlands, is expressed 
in the second polynomial. This polynomial is depending only on the solar selenographic longitude 𝛷. 
Fourth order coefficients 𝑏&%  are defined for every wavelength.  

The third section, with four wavelength dependent coefficients 𝑐&%, represents the visible part of the 
Moon and how it is illuminated (topographic libration).  

The last part of the equation is a set of parameterized exponential and cosine functions modulated by 
a set of 𝑑&% coefficient: it is an empirical iterative least squares fitting of non-linear residuals in the 
irradiance, with respect to the phase angle. 

The output reflectance of the model, with varying phase angle is shown in Figure 1.  
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Figure 1: ROLO model reflectance spectrum output for different phase angles. 

 

2.3 Geometric Calculations 
 

2.3.1 Definition 
Although the geometric calculations for Moon, Sun and observer are not explicitly part of the model, 
it is useful to mention that they are done using the JPL NAIF spice library. The software is available 
from: https://naif.jpl.nasa.gov/naif/ 

From the observation timestamp and exact topographic position it is possible to calculate in the J2000 
celestial frame the position of observer, sun and moon. 

With these positions, all inputs for the lunar reflectance model are defined: g, 𝜃, 𝜙, Φ. 

The JPL NAIF spice library provides a set of kernels to define the position and motion vectors of the 
different celestial bodies involved in the geometric calculation: 

List of kernels used to configure the spice library : 

Kernel name Kernel type 
naif0010.tls Leap-seconds (for UTC) 
pck00010.tpc Planetary constants  
earth_000101_130520_130227.bpc Planetary constants  - earth 
earth_070425_370426_predict.bpc Planetary constants  - earth 
moon_pa_de421_1900-2050.bpc Planetary constants  - moon 
de421.bsp Ephemeris - earth 
earth_assoc_itrf93.tf Reference frame ITRF93 
moon_080317.tf Reference frame Moon 
moon_assoc_me.tf  

Table 1: SPICE kernel list used in geometric calculations 
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2.3.2 Geometric coverage 
There are many periodic cycles that apply to the Moon, Earth and Sun geometry. The cycle with the 
longest period is called the Saros cycle and its duration is 223 synodic months, which is 18 years, 11 
days and 8 hours. After this cycle, Earth, Moon and Sun return to the same relative geometry.  

The shortest cycle is the variation in phase angle which takes about 28 days between two full moons. 
The cycle for the distance between Sun and Earth/Moon takes about one year.. 

The complete Saros cycle covers all possible relative positions between Moon, Earth and Sun. Ideally, 
measurements need to be done for the entire cycle to get a complete coverage of the libration 
between all three bodies. This is not feasible within the scope of a project like this. Fortunately, about 
6 years of daily measurements from an Earth fixed position are sufficient to homogeneously sample 
the space of possible selenographic latitude/longitude and phase angles occurring during the lunar 
cycle. In Figure 2 the corresponding selenographic latitude and longitude and phase angles are 
displayed for a period of six years (simulated with SPICE [RD 2] ). Phase angles above 90 degrees 
absolute are discarded. The regression of the model interpolates between the measured librations. 

 

 

Figure 2: Phase angle, solar and observer selenographic longitude and latitude coverage for 6 years continuous 
observations 

Plots of geometry of the measurements show the limited coverage, compared to the previous plot. 
However, the most recent plots including all 1088 instrument measurements (3.5 years of 
measurements), currently reveal a significantly increased libration coverage. 

 

 

Figure 3: Phase angle, solar and observer selenographic longitude and latitude coverage for the 1088 instrument after 3.5 
years of measurements 
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2.4 Lunar Measurements 
Figure 4 is a plot of approximately three years’ lunar irradiance measurements with the 440 nm 
spectral band relative to the phase angle. Both 933 and 1088 instrument measurements are plotted. 
The irradiance is normalized for distances between sun, moon and observer at the time of 
observation.  

The irradiance is converted to reflectance values using the following formula. All further model 
derivation is performed on the disc equivalent reflectance.   

 

 

A' =
I'π
Ω(E'

 (2) 

 

𝐴) lunar reflectance for a wavelength λ 

𝐼) measured irradiance 

𝐸) extra-atmospheric solar irradiance 

𝛺( solid angle of the Moon (6.4177 ×10-5 sr) 

 

The solar irradiance spectrum used is the Werhli 1985. It is the same as the one used with the 
development of the ROLO model, which allows for comparison of the model reflectance output. 
Replacement with other irradiance standards is possible, but the same model needs to be applied 
when converting back from reflectance to irradiance (i.e. when comparing with other Lunar 
irradiances). 

Figure 4 is the plot of all irradiance measurements used in the derivation of the model (instrument 
440 nm band).  3-sigma filtering is applied to the original measurements.  

Close to full moon there is an apparent increase in scattering in the lower phase angles. However, in 
Figure 5, after removal of outliers, the relative residuals between the measurements and the model 
appear to be independent of the phase angle. 
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Figure 4: Lunar irradiance measurements for 440 nm 

 

 

Figure 5: Relative residuals between measurements and model for 440nm and 870nm 

 

2.5 Lunar irradiance model coefficient regression 
The equation 1 models the natural logarithm variations of the disc equivalent reflectance. The 
parameters 𝑎&% , 𝑏&%,	𝑐&% and 𝑑&%can be derived from direct irradiance measurements with the 1088 
instrument, for all spectral bands. 

The model  equation can be split in two main components, representing a linear part and a non-linear 
part. The regression strategy is also separate for each part. There is also a distinction between band 
specific coefficients and the ones that are fitted for all six spectral bands.  
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Figure 6: Lunar model coefficients regression algorithm 

 

First, a least-squares fit on the linear part of the model is calculated, by putting all d-parameters in 
equation 1 to zero. First, the a, b and c band specific coefficients are derived. With this set of 
coefficients, (a, b and c), a first 3 sigma outlier removal is done.  

Then, a regression is performed on the non-linear part of the equation, using the Levenberg-
Marquardt method. The d and p parameters are calculated using the residuals of all bands (Figure 8). 
The p parameters are then used in further regression and outlier removals. 

Finally, again a full linear fitting is performed on the entire equation, keeping the previously derived 
non-linear parameters constant (p-parameters). 
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Figure 7: Natural logarithm of lunar reflectance measurement against absolute phase angle [degrees]. Negative and 
positive angles plotted separately  

 

 

2.5.1 Linear model fitting procedure 
 

The first step in the regression approach is regression on the linear part of the model : in Figure 7, the 
natural logarithm of the measured reflectance is taken before doing the first regression. 

Multivariate linear regression is performed for the first three sets of coefficients, using the matrix 
approach. The linear part of the model is described by the first part of the model formula : 

 

ln(𝐴!) ='𝑎"!𝑔"
#

"$%

+'𝑏"!𝛷&"'(
#

"$(

+ 𝑐(!𝜃 + 𝑐&!𝜙 + 𝑐#!𝛷𝜃 + 𝑐)!𝛷𝜙 
(3) 

 

The regression is calculated per band : one set of a, b and c coefficients, a total of 11 parameters, is 
determined simultaneously for each band using the following formulation : 

 

8

𝑦!
𝑦+
…
𝑦,

; =	

⎝

⎛

1 𝑥!! 𝑥!+ … 𝑥!-
1 𝑥+! 𝑥++ … 𝑥+-
1 ⋮ ⋮ ⋱ ⋮
1 𝑥,! 𝑥,+ … 𝑥,-⎠

⎞8

ℎ!
ℎ+
…
ℎ-

; 

 

 

The X matrix dimension in this formula is n * p :  
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• n  number of measurements  
• p  number of coefficients to be fitted. 

Definition of the parameters in the matrices : 

• yn   the natural logarithm disc reflectance ln(Ai) 
• xnp  predicted p , calculated for measurement n 
• hp coefficient p  

 

The y values are the natural logarithm for every measured reflectance A, the x values are all calculated 
predictor values. They are calculated using phase angle, solar selenographic longitude, observer 
selenographic longitude and latitude. Practically, the matrix is constructed with every factor the of the 
lunar model calculated, as if all a, b and c parameters are equal to 1.0 (see also X-matrix below). 

The h-matrix represents the coefficients to be fitted and e the resulting fitting error. Rewriting the 
regression formula gives following matrix equation : 

𝐘 = 𝐗𝐡 (4) 
 

After converting the formula, the solution for matrix h can be found (X’ is the transposed X matrix. X-1 
is the inverse of X. 

𝐡 = (𝐗.𝐗)/!𝐗′𝐘 (5) 
 

 

 

Steps to calculate the resulting h matrix : 

First you calculate X’, then you multiply X’ and X, which results in a squared matrix of 
dimension n ×n. The inverse of this new matrix A is calculated using LU decomposition using 
Crout’s algorithm with partial pivoting.  

Construction of the matrix X is done by filling in the predictors at their matrix position, for every 
measurement. For band k and n measurements, the construction of the matrix is as follows : 

Definition of the X matrix is as follows : 

 

1 𝑔!%! 𝑔!%+ 𝑔!%0 𝛷!%! 𝛷!%0 𝛷!%1 θ!% ϕ!% 𝛷θ!% 𝛷ϕ!%
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
1 𝑔2%! 𝑔2%+ 𝑔2%0 𝛷2%! 𝛷2%0 𝛷2%1 θ2% ϕ2% 𝛷θ2% 𝛷ϕ2%
1 𝑔(24!)%! 𝑔(24!)%+ 𝑔(24!)%+ 𝛷(24!)%! 𝛷(24!)%0 𝛷(24!)%1 θ(24!)% ϕ(24!)% 𝛷θ(24!)% 𝛷ϕ(24!)%
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
1 𝑔,%! 𝑔,%+ 𝑔,%0 𝛷,%! 𝛷,%0 𝛷,%1 θ,% θ,% θ,% 𝛷ϕ,%

 

 

The result is a n × 11 matrix, for n measurements and 11 coefficients 
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Similarly, for the construction of the Y matrix, each irradiance measurement is first converted to 
reflectance A and the natural logarithm resulting in the n × 1 matrix: 

 

ln	(𝐴!)%
⋯

ln	(𝐴2)%
ln	(𝐴24!)%

⋯
ln	(𝐴,)%

 

 

 

After obtaining the coefficients, the remaining residuals represent the nonlinear part of the model. 
The procedure for retrieving the d and p coefficients is described in the next section. After the 
nonlinear regression, the linear regression procedure is repeated, using the selected measurements. 
The X matrix is expanded with factors for the d coefficients. All 14 linear coefficients are then fitted 
again for the remainder of the measurements. 

 

𝑒/
!
"#% 𝑒/

!
"$% 𝑐𝑜𝑠 S

g − p0
p6

W
%

⋯ ⋯ ⋯
𝑒/

!
"#,% 𝑒/

!
"$,% 𝑐𝑜𝑠 S

g − p0
p6

W
,%

 

 

 

 

2.5.2 Non - Linear fitting procedure 
 

These residuals (Figure 8) will be used to fit the non-linear part of the model. To obtain the band 
independent parameters (p), regression will be done based on the Levenberg-Marquardt [RD3] 
method.  

 

𝑅𝑒𝑠	 = 	𝑑!%𝑒
/ %
&# + 𝑑+%𝑒

/ %
&$ + 𝑑0% cos S

𝑔 − 𝑝0
𝑝6

W	(2)	 
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Figure 8: Model residue (in the fitted parameter ln(A)) after linear fitting process for all bands 

 

 

The non-linear part of the lunar reflectance model depends on the measurement phase angle. From 
the residuals calculated with previous steps, the next non-linear relationship is fitted. For 
convenience all 7 fitting parameters d and p. In the first iteration, all a parameters will be fitted 
against all bands. In the second iteration the p-parameters are adopted from the first fitting. From 
that point, the d parameters are re-fitted, but band specific and in a linear least squares fitting with 
all a, b and c parameters. 

 

Based on the calculation of the merit-function. The model has to be fitted : 

 

Model : 

𝑦 = 𝑦(𝑥; 𝑎) (3) 

Merit-function : 

 

𝒳+(𝐚) =ab
𝑦& − 𝑦(𝑥𝑖; 	𝐚)

𝜎&
d
+7

&8!

 

 

For every ak one can calculate the derivative of the merit function : k = 1…M with M the number of 
parameters (7 in our case). 
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𝜕𝒳+

𝜕𝑎%
= −2ab

𝑦& − 𝑦(𝑥𝑖; 	𝐚)
𝜎&+

d
𝜕𝑦(𝑥𝑖; 	𝐚)
𝜕𝑎𝑘

7

&8!

 

 

And additional partial derivatives : 

 

		
𝜕+𝜕𝒳+

𝜕𝑎𝑘𝜕𝑎𝑙
= 2a

1
𝜎&+

e
𝜕𝑦(𝑥𝑖; 	𝐚)
𝜕𝑎𝑘

𝜕𝑦(𝑥𝑖; 	𝐚)
𝜕𝑎𝑙

−	[𝑦& − 𝑦(𝑥𝑖; 	𝐚)]
𝜕2𝑦(𝑥𝑖; 	𝐚)
𝜕𝑎𝑙𝜕𝑎𝑘

h
,

&8!

 

 

 

This can be rewritten as a set of linear equations :  

 

a𝛼%9𝛿𝑎9 =	𝛽%

:

98!

			 

 

With 

 

𝛽% ≡	−
1
2
𝜕𝒳+

𝜕𝑎𝑘
 

 

 

and 

 

𝛼%9 ≡	
1
2
𝜕+𝜕𝒳+

𝜕𝑎𝑘𝜕𝑎𝑙
 

 

2.5.3 Residual outlier removal approach 
 

After removing all measurements outside the filter interval [-90;90] degrees, a filter approach as 
applied to the residuals of the measurements. The residuals are calculated based on the model 
parameters that have been derived at  

3 sigma filter procedure: 

resi  residuals for ith measurement 
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N total numer of measurements (i) 

 

𝑟𝑒𝑠2;<, =
∑𝑟𝑒𝑠&
𝑁

 

 

𝑠(𝑟𝑒𝑠) = 	p
1
𝑁
a(𝑟𝑒𝑠& − 𝑟𝑒𝑠=>?@)+
7

&8!

 

 

resmean is the mean residual and s(res) is the residuals standard deviation. A 3-sigma filter ( 99.7% 
confidence interval ) is applied, to remove outlier measurements. This filter is applied multiple times 
during the coefficient regression procedure.  

 

𝑟𝑒𝑠=>?@ − 3𝑠(𝑟𝑒𝑠) < 	 𝑟𝑒𝑠& < 𝑟𝑒𝑠=>?@ + 3𝑠(𝑟𝑒𝑠) 
 

 

Figure 9: Filtered vs unfiltered irradiance (restricted number of measurements for illustration) 

As an example, one can see the filtering result in Figure 9. Blue dots are filtered out after applying 
the 3 sigma filter to the residuals. 

 

2.5.4 Iterative regression procedure 
 

Outliers influence the results of the regressions quite significantly, so they need to be removed from 
the measurement population as much as possible. After all regression steps, the  3-sigma filter is 
applied. 
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Regression sequence : 

• Fit the linear coefficients a, b and c (all d coeffs equal to zero) 
• Remove outlier 3-sigma from the residuals :  

o Residual = (measurement irradiance – model as is) 
• Perform non-linear regression for d-coefficients and p-coefficients 
• Remove outlier 3-sigma from the residuals  
• Perform fitting over all linear coefficients : a,b,c,d (non-linear coefficients previous step) 
• Remove outliers based on residuals full model  

After the first iteration, a second full iteration is performed 

 

2.5.5 Model coefficients 1088 instrument 
Within the period 03/2018 until 12/2021,about 400 lunar irradiance measurements have been 
performed (depend per spectral band) and after filtering the data, based upon the quality of the 
Langley plots, between 230 and 260 retrievals have been used to derive the model parameters in 
Table 2.  

 

wl[nm] a0 a1 a2 a3 b1 b2 b3 
440 -2.26317 -1.95341 0.691585 -0.30189 0.052456 0.008714 -0.00415 
500 -2.15048 -1.82816 0.59675 -0.27933 0.050078 0.010695 -0.00382 
675 -1.91452 -1.72298 0.562315 -0.2762 0.047094 0.012212 -0.00484 
870 -1.81647 -1.5906 0.465803 -0.24815 0.046823 0.018782 -0.007 

1020 -1.75279 -1.50502 0.401689 -0.22989 0.052412 0.021768 -0.00864 
1640 -1.47438 -1.21778 0.189073 -0.16837 0.047555 0.011999 -0.00487 

wl[nm] c1 c2 c3 c4 d1 d2 d3 
440 0.001217 -0.00036 0.00161 0.000732 -0.09294 2.000626 -0.00571 
500 0.001117 -0.00041 0.00178 0.000945 12.96653 -12.422 -0.00273 
675 0.001113 -0.00043 0.00171 0.000936 9.886489 -9.75239 -0.00594 

870 0.001153 
-3.74E-

04 0.001882 0.000895 10.47813 -10.3637 -0.00342 

1020 0.001044 
-4.50E-

04 0.001817 0.000837 11.93628 -11.8154 -0.00255 

1640 0.000945 
-4.90E-

04 0.001732 0.001093 14.32673 -14.4102 3.48E-06 
  p1 p2 p3 p4    
all 1.35446 1.314674 9.324089 9.596769    

 

Table 2: Model coefficients 

With these model coefficients, the lunar reflectance is calculated for every model wavelength. 
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Figure 10: Lunar reflectance per wavelength for different phase angles. Interpolated values only for visual guidance, not the 
actual spectral  interpolation 

 

It must be noted that these coefficients are currently under development and not final. The model will 
be updated on a yearly basis, based upon new measurements added to the measurement database.  

 

2.6 Lunar irradiance model output 
With the model parameters tabulated in Table 2, the lunar reflectance can be calculated for the model 
spectral bands (Figure 10). The model output wavelengths correspond to the lunar photometer 
spectral bands. The reflectance values obtained from the model are subsequently used as absolute 
references to radiometrically scale a hyperspectral lunar reflectance spectrum. This radiometrically 
rescaled hyperspectral lunar reflectance spectrum can be convolved with at a given remote sensing 
instrument spectral response curves and simulated remote sensing instrument observations. The 
model inputs are lunar phase angle, selenographic positions of sun and observer and a band response 
curve to which the model irradiance needs to be convolved. 

 

2.6.1 Spectral model adjustment 
A reflectance spectrum of the Moon is used to increase the model spectral resolution. The lunar model 
calculates the reflectance at 6 wavelengths. The spectral range of the model goes from 440 nm to 
1640 nm. Therefore, in intermediate model regions, the spectrum needs to be adjusted and 
reconstructed. 

First step is the smoothing of the measured spectrum with a reference reflectance. The lunar model 
allows for a flexible configuration of the reflectance spectrum. In the current configuration, the 
original Apollo spectrum can be used, or the spectrum derived from measurements with the Pandora 
instrument. The Pandora instrument measurement campaign has been conducted over a full lunar 
phase cycle. This allows for the adjustment of the reflectance model based on the phase angle. This 
will be done by linear interpolation. The reflectance spectra shown in Figure 11 show a difference 
between the Pandora and the Apollo spectrum. The Pandora spectrum is taken for one specific day. It 
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is currently still under investigation why in many cases the measured Pandora reflectance deviates 
quite a lot in absolute terms, from the Apollo spectrum.  

 

 

Figure 11: Difference Apollo and Pandora spectrum 

 

In this study, the Apollo spectrum mix is used to calculate the lunar spectral irradiance. The lunar 
model is the absolute reflectance reference for the different wavelengths, the reflectance spectrum 
is the spectral reference. 

For a given geometry (phase angle, libration, …) the lunar model provides a reflectance for all 6 model 
bands. Then, the reflectance spectrum is convolved with the model spectral band responses (i.e. the 
CE318-TP9 instrument), providing a second reflectance at every model spectral band. Both 
reflectances are used to define the smoothing parameters by means of Least Absolute Deviation (LAD) 
regression. 

 

LAD regression general formulation : 

𝑦(𝑥; 𝑎, 𝑏) = 𝑎 + 𝑏𝑥 

Function to minimize (N is the number of model wavelengths): 

	a|𝑦& − 𝑎 − 𝑏𝑥|
7

&8!

 

The median minimizes the sum of absolute deviations and for a fixed b, the value of a that minimizes 
is : 

𝑎 = median{𝑦& − 𝑎 − 𝑏𝑥&} 

Regression parameter b is found by bracketing and intersection of next function (a can be filled in) : 
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0 =a𝑥&𝑠𝑔𝑛(𝑦& − 𝑎 − 𝑥&)
7

&8!

 

 

From the LAD regression parameters, the full reflectance spectrum is converted/adjusted. The 
smoothing adjustment is applied to the measured reflectance spectrum  

𝑅_smooth) = 𝑏𝑅) + 𝑎 

 

As can be observed in Figure 1, the output of the ROLO model is subjected to irregular variations with 
respect to wavelength. Therefore, a procedure for smoothing of the reflectance is proposed in [RD1].  

Reflectance profiles of two Apollo 16 lunar probe samples are used, to construct a reference 
reflectance spectrum. This spectrum is used to radiometrically rescale and interpolate the ROLO 
model output at the ROLO measurement spectral bands. 

The resulting reflectance 𝑅mix)  is a linear combination of both spectral (𝜆) reflectance’s. 

𝑅mix) = 0.05 × 𝑅breccia) + 0.95 × 𝑅soil)	(4) 

In Figure 12 you can observe the resulting mixed reflectance (in green) of the Apollo 16 breccia sample 
(red line) and Apollo 16 soil sample (dark blue line). 

 

Figure 12: Lunar reflectance spectral smoothing 
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The mixed reflectance is derived for every lunar model wavelength of the model (purple dots on the 
green curve). These values are used to calculate the least absolute deviation regression values. The 
lunar model reflectance’s used in the regression are calculated for every measurement specifically. 

This regression results in a set of smoothing coefficients, which are applied to the spectral reflectance 
model, resulting in a smoothed lunar reflectance spectrum.  

 

 

 

Figure 13: Cimel response curves and interpolated smoothed reflectance 

 

The approach is applied both to the Apollo spectrum and the available Pandora reflectance 
spectrum. For the 440nm spectral band Figure 14 shows that the difference between final model 
irradiance and instrument measurement irradiance is quite similar for both spectral models. With 
the Apollo reflectance spectrum, a slightly increased phase angle dependency can be observed 
(orange dots). Further investigation is required when, in a next iteration of the model, the 
reflectance spectrum is extended up to 2500 nm with ASD measurements. The Pandora spectrum by 
itself only reaches up to 940 nm. 
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Figure 14: Residual between measurement and model for Apollo and Pandora reflectance spectrum (for illustration with 
previous measurement dataset) 
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2.6.2 Simulating lunar irradiance measurements from the lunar irradiance model  
 

The reflectance spectrum obtained in the previous section is converted to irradiance, and then 
convolved with a given remote sensing instrument relative spectral response (e.g: a multi-spectral 
instrument). By means of cubic spline interpolation, the reflectance spectrum is resampled to the 
relative spectral response wavelengths and then convolved with the model simulated lunar irradiance  
spectrum. 

First, the second derivative of the entire spectrum is calculated. The interpolation between 2 points 
(j and j+1) is defined by : 

𝑦 = 𝑎𝑦A + 𝑏𝑦A4! + 𝑐𝑦A.. + 𝑑𝑦A4!..  

 

For every wavelength point of the response curve, interpolation is calculated. Then the integral 
normalized by the integral of the Relative Spectral Response (RSR) of the sensor is calculated. 

 

 

𝐼% = π ∗ 𝛺: ∗
∑ 𝑅𝑒𝑓𝑙& ∗ 𝐸& ∗ 𝑅𝑆𝑅& ∗ 𝜆&
)'
&8)(

∑ 𝑅𝑆𝑅& ∗ 𝜆&
)'
&8)(

	(5) 

 

Ik integrated lunar model reflectance for spectral band  k 

Refl  interpolated lunar reflectance spectrum at the sensor RSR wavelengths 

RSR  band spectral response 

λ wavelengths at which the sensor RSR are defined 

Ei Exo-atmospheric solar irradiance  

𝛺: solid angle of the moon (6.4177 ×10-5 sr) 

 

This model irradiance value is the input for comparison with lunar acquisitions done with the band 
represented by the RSR provided to the model. 
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2.7 Polarization 
 

2.7.1 Introduction 
The linear polarization of lunar reflected light has been studied and the phase angle dependency is 
described in [RD5]. Unusually, the lunar polarization shows negative linear polarisation at phase angles 
smaller than the inversion angle. This is the phase angle at which the polarisation becomes negative (22° 
absolute phase angle) [RD5]. 

The CE318-TP9 lunar photometer (1088 instrument) measures directly the degree of linear 
polarization of the moon. With these measurements, it is possible to derive a simplified model, based 
on linear regression. The model is defined per band and consists of 2 separate 4th degree polynomial 
functions, one for positive and one for negative phase angles.  

 

2.7.2 Degree of linear polarization - measurements 
The degree of linear polarization(DoLP) of a signal is defined as 

 

𝑃 = 	BC
$4	E$

F
  

 

I, Q and U are the Stokes parameters that describe the polarization of electromagnetic radiation. The 
circular polarization component V is ignored.  

 

The construction of the 1088 instrument prevents the Stokes parameters from being measured 
directly, but the DoLP can be calculated from the different instrument filter outputs. This implies 
however, that it is not possible to measure negative polarization. The way to convert the output of 
the instrument to Stokes parameters, or a way to calculate a negative solution of the DoLP formula, is 
currently under investigation. 

For the purpose of this project, all measurements below the inversion angle are set to negative. This 
is a pragmatic approach the use the negative solution of the DoLP formula. This approach might be 
improved or refined in the future. This depends on the availability to derive Stokes parameters from 
measurements. 

Three linear polarized filters are oriented 60° from each other, measuring directly the raw polarized 
signals. The three filters give a value for Sp1 , Sp2 , Sp3. The degree of polarization is derived with the 
following formula : 

 

𝐷𝑜𝐿𝑃 =
+GHI&#$ 4J#$$ I&$$ 4J#)$ I&)$ /J#$I&#I&$/J#)I&#I&)/J#$J#)I&$I&)

I&#4J#$I&$4J#)I&)
   

R12, R13 are the corrections for total polarization transmittance and η is the polarization calibration 
coefficient. These are constant values, calculated during the calibration of the instrument.  
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All measurements performed in this project with the 1088 instrument are done with polarization 
enabled. This means for the period of about 1 year, more than 120000 measurements of lunar 
polarized light are available.  Not all measurements are done at full night-time and these need to be 
filtered from the regression. The measurements are filtered on time – between 23h at night and 2h in 
the morning and outliers are removed (i.e. cloud contaminated measurement,…). Measurements with 
negative and positive phase angles are split to be able to produce a separate regression on both sides. 
About 25000 measurements per phase sign are used to perform the model regression. The spectral 
bands are treated separately. 

 

2.7.3 Model 
Publications have shown a negative polarization for phase angles smaller than 22 degrees (inversion 
angle)[RD5]. The method applied with the CE318-TP9 measurements do not allow for a negative phase 
angle. Therefore, it is currently decided, to allow for modelling to change the sign of all measurements 
between -22 and 22 degrees phase angle.  

 

 

Figure 15: model for lunar DOLP curve with phase angle (Kvaratskhelia - 1988) 
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Figure 16: Curve fitted DOLP measurements for 500 nm band 

 

The model is limited to be between 0° and 90° absolute phase angle. All polarization measurements 
outside these angles are removed from the regression of DoLP curves. 

 As can be observed in Figure 16, the DoLP can be modelled using a fourth order polynomial with the 
intercept set to zero. From this polynomial the DoLP value is calculated directly. 

 

𝐷𝑂𝐿𝑃 = 𝑎! × 𝑔 + 𝑎+ × 𝑔+ + 𝑎0 × 𝑔0 + 𝑎6 × 𝑔6 

g :  is the phase angle in degrees 

 

Table 3: Polynomial coefficients for DOLP  

 

 

 

The polarization model will allow for a degree of polarization provided by the lunar model with respect 
to the input phase angle. It is provided as an optional extra output.  

 

2.7.4 DoLP spectral dependency 
The DoLP appears to be spectrally-dependent as well, with an increased spectral dependence for 
higher phase angles.  

a1 a2 a3 a4 a1 a2 a3 a4
440 0.003008799098 0.000177889155 0.000002581092 0.000000012553 -0.003328093061 0.000221328429 -0.000003441781 0.000000018163
500 0.002782607290 0.000161111675 0.000002331213 0.000000011175 -0.002881735316 0.000186855017 -0.000002860010 0.000000014778
675 0.002467126521 0.000140139814 0.000002021823 0.000000009468 -0.002659373268 0.000170314209 -0.000002652223 0.000000013710
870 0.002536989960 0.000150448307 0.000002233876 0.000000010661 -0.002521475080 0.000157719602 -0.000002452656 0.000000012597
1020 0.002481149030 0.000149814043 0.000002238987 0.000000010764 -0.002546369943 0.000158157867 -0.000002469036 0.000000012675
1640 0.002135380897 0.000126059235 0.000001888331 0.000000009098 -0.002726077195 0.000171190004 -0.000002850707 0.000000015473

negative positive
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Figure 17: Modelled DoLP for all wavelengths (negative phase angle) 

 

DoLP retrievals in between 1088 instrument wavelengths, i.e. the central wavelength of a sensor 
spectral band, are interpolated linearly. 

  



Lunar irradiance Model Algorithm and Theoretical Basis Document 

32 | P a g e  
 

3 Model uncertainties 
3.1 Initial concepts 
The Guide to the Expression of Uncertainty in Measurement (BIPM, 2008), and its supplements 
provide guidance on how to express, determine, combine and propagate uncertainty. The GUM and 
its supplements are maintained by the JCGM (Joint Committee for Guides in Metrology), a joint 
committee of all the relevant standards organisations and the International Bureau of Weights and 
Measures, the BIPM. The documents describe both the “Law of Propagation of Uncertainty” 
(hereafter, LPU) and Monte Carlo methods of uncertainty propagation.  

The LPU propagates standard uncertainties for the input quantities through a locally-linear first-
order Taylor series expansion of the measurement function to obtain the standard uncertainty 
associated with the measurand. Higher order approximations can be applied if necessary. 

Monte Carlo methods approximate the input probability distributions by finite sets of random draws 
from those distributions and propagate the sets of input values through the measurement function 
to obtain a set of output values regarded as random draws from the probability distribution of the 
measurand. The output values are then analysed statistically, for example to obtain expectation 
values, standard deviations and error covariances. The measurement function in this case need not 
be linear nor written algebraically. Steps such as inverse retrievals and iterative processes can be 
addressed in this way. The input probability distributions can be as complex as needed, and can 
include distributions for digitised quantities, which are very common in EO, where signals are 
digitised for on-board recording and transmission to ground.  

Monte Carlo methods can provide information about the shape of the output probability 
distribution for the measurand, deal better with highly non-linear measurement functions and with 
more complex probability distributions, and can be the only option for models that cannot be 
written algebraically (including for iteration). However, they are computationally more expensive, 
which is an important consideration with the very high data volumes of EO.  

3.2 Fitting 
In this project there are several fitting processes. First for each night’s data, a straight line is fitted to 
the raw data for the Langley plot method; second the lunar model (separated into linear and nonlinear 
components) is fitted to the TOA lunar irradiance values obtained for each night; and third the spectral 
data are fitted to a spectral model. The process is further complicated by iteration both at the Langley 
plot stage to consider the lunar phase change during the Langley plot, and with the lunar model fitting 
outlier removal process. 

We can consider uncertainties at several levels of complexity in fitting processes: 

• At the simplest level, the fitting is done with an unweighted least squares approach (or non-
linear, iterative, equivalent, such as the Levenberg-Marquardt method), taking no account of 
uncertainties in the fit itself.  

• At the next simplest level, we may use uncertainties to weight the data going into the fitting 
process. This could be a weighted-least-squares fit (where the residual is divided by the 
uncertainty before being squared and summed), or, more simply, by introducing a cut-off 
(outlier removal) 

• In a more robust method, the covariance of the input quantities and uncertainties in the 𝑋&  
and 𝑌&  would be considered in the fitting process. Here the full input quantity covariance 
would be included in the fit process. (e.g. methods such as generalised least squares – if the 
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uncertainties are in one quantity only, or orthogonal distance regression – if the uncertainties 
are in both axes). 

• In the most robust method a measurement model is developed that includes error quantities 
for the input measurements and fits the values of those errors as well as the desired model 
parameters as part of the fit process. This is known as “errors in variables” fitting. 

Note that each of these methods would not only provide a different uncertainty associated with the 
fitting but would also give a different value for the fit. When uncertainties and error covariance are 
taken into account in the fit process, then the fit will be different. To understand this, consider the 
simplest example of the difference between a simple mean and a weighted mean. If some measured 
values have much larger uncertainties than others, then in a simple mean the fit will be closer to these, 
in a weighted mean, it would be closer to those points with smaller uncertainties.  

With the more robust approaches, the covariance of the fit parameters (the uncertainty associated 
with each parameter and the covariance between any pairs of parameters) would be determined 
“automatically” – in the sense that it can be easily calculated from the available information and would 
normally be calculated as part of the analysis. With the simpler approaches there is a need to calculate 
the uncertainty separately. 

For a simple linear regression, the uncertainty can be calculated analytically. Alternatively, and more 
easily for complex multi-stage or iterative regressions, Monte Carlo methods can provide an 
uncertainty. Whether analytical or Monte Carlo approaches are used, care must be taken in 
interpreting the uncertainty determined – the determined uncertainty will be based on the 
assumptions. It assumes that the model being fitted is consistent with the data.  

3.3 Approach to uncertainty analysis for this project 
Within this project our approach is to use the simplest form of fitting and to apply Monte Carlo analysis 
to estimate uncertainties. We also indicate how, in later work, we can take some of the input quantity 
uncertainties into account in the fitting itself.  

The Monte Carlo analysis is fed with random errors, based on the knowledge of uncertainties provided 
with the measurements. In practice, every measurement will be slightly adjusted with a random error 
which lies within the uncertainty interval. 

We currently use an estimate of the typical uncertainty associated with the fit of the individual Langley 
plots based on statistical analysis of the range of uncertainties observed, as described below in section 
3.4. The input for the Monte Carlo analysis is perturbated at least 1000 times and thus 1000 lunar 
models are calculated from the perturbated input. 

 

3.4 Uncertainties in the Langley Plot intercept 
The Langley Plot fits a straight line to the logarithm of signal as a function of airmass. As discussed in 
our report [AD2], the uncertainty associated with airmass is considered negligible. The uncertainty 
associated with the signal (corrected for instrument temperature effects and for lunar phase changes 
during the Langley1, as well as for sun-moon and moon-Earth distances) is dominated by the noise in 
the measurement. 

 

1 The correction for lunar phase changes during the Langley is performed by iterating the Langley plot and 
lunar model fitting several times. 
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This measurement noise was estimated in the D4 report [AD2] from the statistics of the triplet (each 
observation being three observations made very close together in time).  

 

Table 4 Table given in D4 (there Table 28) with additional line for combined standard uncertainty 

Term Uncertainty [%] 

1640nm 1020nm 870nm 675nm 500nm 440nm 

D(λ, t) 0.07 0.05 0.02 0.01 0.03 0.04 

FT(λ) 0.0027 0.13 0.18 0.17 0.15 0.053 

FT(λ) 0.002 0.037 0.001 0.002 0.003 0.003 

Kdist 0 0 0 0 0 0 

A(tref,λ)/A(t,λ) 0.006 0.006 0.006 0.006 0.006 0.006 

+0 (aerosol’s diurnal 
cycle) 

0 0 0 0 0 0 

Combined standard 
uncertainty 0.070 0.144 0.181 0.170 0.153 0.067 

  

The residuals observed in the initial model fit however indicate that the uncertainty associated with 
individual Langley plots using these values is an underestimation.  

In D4 we discussed that this could be in part because of changes in aerosol (and other atmospheric) 
properties during the Langley. We described there that at least some of such a variation may not be 
visible in the Langley analysis itself as the curve would “still look linear”, however, since we do see 
variations in the Langleys that have a clear “shape” to them, we also allow for the possibility that these 
atmospheric variations may also cause random or semi-random effects in the Langley fitting. 

Table 5: Uncertainty associated with atmospheric effects during the Langley [AD2] 

 Uncertainty in Vo [%] 

1640nm 1020nm 870nm 675nm 500nm 440nm 380nm 340nm 

Aerosol 0.2 0.2 0.3 0.3 0.5 0.5 0.5 0.7 

Other 0.17 0.25 0.01 0.12 0.17 0.19 0.31 0.5 

Total 0.37 0.45 0.31 0.42 0.67 0.69 0.81 1.2 

 

It is also reasonable to assume that using a standard deviation of the triplets, which shows instrument 
stability over a very short period of time, underestimate the uncertainty associated with the stability 
of the instrument for the duration of the Langley.  

 

3.4.1 Fitting the Langley 
The original fitting for this project used a simple least squares analysis fit that does not take into 
account the uncertainty associated with each data point, nor provides an uncertainty associated with 
the intercept. 

Based on the residuals observed indicating a potential underestimation of the uncertainty associated 
with the Langleys , we performed a more rigorous analysis where each data point was given the same 
relative uncertainty taken from the standard deviation of the triplets. (See APPENDIX A for more 
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information about how this fit was done and APPENDIX C for how logs were dealt with). The fit routine 
we used then also calculated the uncertainty associated with the intercept and the 𝜒+ value of the fit. 
Where the observed 𝜒+ was smaller than the expected 𝜒+, the intercept uncertainty was accepted as 
given. Where the observed 𝜒+ was larger than the expected 𝜒+, relative uncertainty on each data 
point was increased by small increments until the 𝜒+ test was passed.   

3.4.2 Example Langley statistics 

When performing the fit and applying the 𝜒+	 test, very few of the Langley plots passed using the 
original uncertainty on the input parameters. This is as expected from the observed residuals in the 
model fit. For those that failed, uncertainty on input parameters was increased incrementally until the 
test was passed and uncertainty associated with the y-intercept, ln	(𝑉#) was determined. A small 
selection required a small increase in uncertainty for each data point, and a few had high uncertainty 
indicating that the fit should be considered for removal from the dataset or have very low weighting 
in the final model 

Example Langley plots are shown below 

 

Figure 18: Langley plots which pass 𝜒* 

 

Figure 19: Langley before increase uncertainty (left) and after (right) 

ln(𝑉%) = 8.1342 

𝑢(ln(𝑉%)) = 0.044% 

𝑢(𝑉%) = 0.385% 

ln(𝑉%) = 7.1845 
𝑢(ln(𝑉%)) = 0.096% 
𝑢(𝑉%) = 0.692% 

ln(𝑉%) = 9.217789 
𝑢(𝑉") = 0.1% 

𝑢(ln(𝑉%)) = 0.037% 
𝑋& = 𝑓𝑎𝑖𝑙 

ln(𝑉%) = 9.217789 

𝑢(𝑉") = 0.152% 

𝑢./0(ln(𝑉%)) = 0.085% 
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Figure 20: Langley before increase uncertainty (left) and after (right) 

   

Figure 21: Langley before increase uncertainty (left) and after (right) 

Using the values of 𝑢(ln[𝑉#]) an and the 𝑢,;K(ln[𝑉#]) where appropriate we plotted a histogram of 
the uncertainty associated with the y-intercept of the Langley plots for each wavelength, and from 
this determined a ‘typical’ uncertainty that would be used in the Monte Carlo uncertainty analysis 
input parameters. Ideally, we should carry forward the individual uncertainty determined for each 
Langley and weight each value of 𝑉#	determined from individual Langley plots in the model fit, and 
this is something to be considered in future improvements of the model.  

 

 

Table 6: Estimated uncertainty in y-intercept of Langley plots 

 440 nm  500 nm  675 nm  870 nm  1020 nm  1640 nm  
𝒖(𝒍𝒏[𝑽𝟎]) 0.35% 0.25% 0.16% 0.18% 0.47% 0.61% 

 

The initial estimates for uncertainty in 𝑙𝑛	(𝑉#	) presented in Table 6 are the ‘typical’ uncertainties 
determined by statistical analysis of the range of intercept uncertainties for the set of Langley plots in 
this analysis. These estimates are obtained before considering the later outlier removal process 
implemented by UVa which iteratively removes any 3-sigma outliers during an initial model fit process.  

A large proportion of Langley plots with high uncertainties in the fit are removed during the model fit 
outlier removal, however some are not, and this highlights the need to consider this fit uncertainty in 
the next iteration of the model. 

ln(𝑉%) = 7.9382 
𝑢(𝑉") = 0.1% 

𝑢(ln(𝑉%)) = 0.043	% 
𝑋& = 𝑓𝑎𝑖𝑙 

ln(𝑉%) = 7.9382 
𝑢(𝑉") = 0.39% 

𝑢./0(ln(𝑉%)) = 0.25 % 
𝑋& = 𝑝𝑎𝑠𝑠 

ln(𝑉%) = 8.1326 
𝑢(𝑉") = 0.1% 

𝑢(ln(𝑉%)) = 0.041% 
𝑋& = 𝑓𝑎𝑖𝑙 

ln(𝑉%) = 8.1326 
𝑢(𝑉") = 0.87% 

𝑢./0(ln(𝑉%)) = 0.47 % 
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After removal of these outliers identified in the model fit process we find that the typical uncertainty 
associated with the linear fit of the Langleys reduces to those values presented in  

. As a first approximation these values are used in this iteration of the model, although more ideally 
we would consider the uncertainty in each individual Langley plot and weight each data point in model 
fit accordingly. We also set an upper limit whereby any Langley plots with uncertainty 5 times higher 
than the typical uncertainty are currently removed from the dataset.  

 

Table 7: Estimated uncertainty in the y-intercept of the Langley plots, after removal of those data points filtered by the 
model fit outlier removal process 

 440 
nm  

500 
nm  

675 
nm  

870 
nm  

1020 
nm  

1640 
nm  

𝒖(𝒍𝒏[𝑽𝟎]) 0.21% 0.16% 0.13% 0.12% 0.12% 0.21% 

 

3.5 Fitting the lunar model 
The lunar model fit is described in section 2. This is a multistep process where the linear part of the 
model is fit for each band, then outliers are removed, then the non-linear part is fit (all bands 
simultaneously), there is further outlier removal and finally the linear part is fit again. The whole 
multistep process is itself iterated. 

To understand the uncertainties associated with the method, we use Monte Carlo Uncertainty 
Analysis (MCUA). The MCUA process is based on a measurement model. In this case we treat the input 
irradiance values (the TOA irradiance values for each night obtained by the Langley Plot process) as  

𝐸&,) = 𝐸&,)
True × �1 + 𝑅&,)	�(1 + 𝑆))(1 + 𝐶)	          (6) 

 

Here: 

𝐸&,)
True is the nominal “true” value for the TOA irradiance in spectral band 𝜆 for the 𝑖th observation 

𝑅&,) is the error in the observation in spectral band 𝜆 for the 𝑖th observation due to random effects, 
expressed in relative terms, e.g. as a percentage of the true value 

𝑆) is the error in the observation that is common for all measurements in this band, expressed in 
relative terms, e.g. as a percentage of the true value 

𝐶 is the error in the observation that is common for all measurements in all bands, expressed in 
relative terms, e.g. as a percentage of the true value 

The error values are unknown; but are draws from a probability distribution with a standard deviation 
given by the relative uncertainty associated with this effect and with an expectation value (central 
value) of zero. 

𝑅&,) takes a different value for every observation. This comes from random processes relating to the 
measurement of the TOA irradiance for a particular night. These include instrument noise, instrument 
temperature changes and atmospheric changes – and relates to the relative uncertainty in the Langley 
Plot intercept that is estimated above [section 0]. 
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𝑆) takes the same value for every observation for a single spectral band. This comes from effects that 
are common for that band – and mostly that is from the NPL calibration of the instrument. Any 
uncertainty associated with the NPL calibration is “fixed” into that calibration and applied to all 
measurements. 

𝐶 takes the same value for every single observation in all spectral bands. This comes from effects in 
the NPL calibration that are wavelength independent, e.g. from a distance offset on an instrument 
alignment. 

3.5.1 The uncertainties associated with systematic errors 
The uncertainties associated with the systematic errors 𝑆) and 𝐶 originate from the calibration of 
the CIMEL photometer at NPL and calculated from the uncertainty analysis outlined in deliverable 
D4 [AD4], and are described in the previous section. 

The uncertainties associated with the calibration were separated into 4 categories:  

a. Fully independent effects (e.g. noise) where the error varies statistically from 
observation to observation (e.g. is different at different distances and for the 
different methods) 

b. Fully common effects (e.g. instrument alignment) where the error is (almost) 
identical for all measurements with all sources at all distances 

c. FEL399 effects (e.g. its calibration) where the error is common to all methods that 
use FEL399 

d. Method common effects where the error is common to the measurements at 
different distances with this method but which is different for other methods 

Here we identify that categories a and d vary from spectral band to spectral bad, and so will make up 
the 𝑆) input parameters for the MCUA and, categories b and d will be largely systematic for all 
channels and so make up 𝐶. These values are presented in Table 8. 

Note that in D4 [AD4], we considered one spectral band at a time, and were combining results from 
multiple calibration measurements. Therefore, these categories do not transfer perfectly from that 
process to here (where band-to-band error correlation is more important). However, there is 
sufficient overlap to use those categories as a starting point. Future activity could propagate band-
correlation separately. 

Table 8 : Systematic uncertainties per band Sλ and to all measurements C 

 440 nm  500 nm  675 nm  870 nm  1020 nm  1640 nm  

𝑺𝝀 0.77% 0.73% 0.55% 0.63% 0.31% 0.31% 

𝑪 1.1% 1.1% 1.1% 1.1% 1.1% 1.1% 
 

 

3.5.2 The uncertainties associated with random errors 
The uncertainty associated with random errors is given by the uncertainty in the Langley Plot 
intercepts. Above (Section 3.4) we showed that the uncertainty in the intercept could range from 0.1 % 
to 0.61 % however this is reduced once we consider the outlier removal in the model fit. 
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Because the uncertainty associated with systematic effects is, by definition, causing a common error 
to all the observation values being fitted by the lunar model, the variation between the measured data 
points and the model must be explained either by inaccuracies in the model form, or by the 
uncertainties associated with random effects. 

We can use an initial estimate of the model parameters, calculated without taking uncertainty into 
account, to compute the residuals – the difference between the model and the measured value. These 
differences should fall within the uncertainties. To test this we plotted a histogram of these residuals 
divided by their associated uncertainties. i.e. we have 

 

𝛥residual =
(Rmeas/Rmodel)

S(Rmeas)
  (7) 

 

Where, 𝑉meas and 𝑉model are the irradiance values  for the measurement and model respectively and 
𝑢(𝑉meas) is the absolute uncertainty (i.e. the relative uncertainty in percent multiplied by the value 
𝑢rel(𝑉meas) × 𝑉meas) associated with that measurement. 

When the model is well fitted by the measurements, and when the measurement uncertainty is 
correctly estimated, this [either form!] will be a Gaussian2 distribution with a mean of zero and 
standard deviation of 1. If the standard deviation is very much less than 1, then uncertainties are 
overestimated, if it is very much greater than 1, then uncertainties are underestimated and if the 
shape is not Gaussian, then the model may not be a good fit to the data, or there are significant 
outliers. 

When we do this calculation with the initial uncertainties we get the following plots : 

 

Figure 22: Relative residual histogram  1088+933 model before filtering 

 

 

 

2 For very small numbers of data points it will be a T-distribution. 
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Figure 23: Relative residual histogram  1088+933 model after filtering 

 

 

 

 

Figure 24: Relative residual histogram  1088 model before filtering 
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Figure 25: Relative residual histogram  1088 model after filtering 

 

The plots show that these residuals are more gaussian shaped after the filtering process. It is also quite 
clear that more samples (555 for 1088+933 as opposed to 166 for 1088) results in a more standard 
gaussian distribution.   

Statistics in the next table show that after filtering, the averages are already close to zero for both 
models and the standard deviation is close to one, after the filtering process. We hope to be able to 
improve the number, when we updated the model to include individual uncertainties for every 
measurement. 

Table 9 :  Statistics associated with model relative residuals 

model 
average 

unfiltered 
stdev 

unfiltered 
average 
filtered 

stdev 
filtered 

1088+933 0.298 1.475 -0.026 0.951 

1088 0.386 1.535 0.011 0.927 
3.5.3 Performing the Monte Carlo Uncertainty Analysis 
The MCUA is performed only for the final iterative step. Here, we run the fit routine 1000 times. For 
each iteration we create a single value of the error 𝐶 drawn randomly from a Gaussian distribution 
with a central value 0 and a standard deviation equal to the uncertainty associated with 𝐶. We draw 
6 values 𝑆), each corresponding to a different spectral band, and we draw as many values of 𝑅&,) as 
are needed – the number of spectral bands multiplied by the number of observations. 

Conceptually, we alter the input values by these errors, perform the fit and then obtain a model 
based on those errors. We then repeat this 1000 times to give 1000 different models. Thus, in 
pseudo code we have: 

 For k = 1 to 1000 
  Choose C from a random Gaussian of width u(C) 
  Choose S_lambda for each band from the appropriate random Gaussians 
  For i = 1 to the number of observations, N 
   Choose a set of R_i for each band from Gaussians 
   Calculate irradiance from Equation (above) 
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   Fit the model, get fit parameters set i 
  Loop observations 
 Loop Monte Carlo run 

Practically, we need to modify this somewhat to account for the fact that the fit occurs on the 
logarithm of reflectance rather than the irradiance, and is for the final iteration of the final, post 
outlier removal, linear fit.  

 

 

 

Figure 26: example of perturbated input irradiance for one measurement 

 

For one iteration, all measurements of all bands are perturbated with a factor (%) calculated from 
the above scheme - 1000 times a new model is fit. 

 

3.5.4 Calculating the uncertainty and covariance of the fit parameters 
At the end of the MCUA process we have 1000 versions of the model that differ from one another in 
a way that is consistent with the uncertainties and covariances of the input quantities. We can use 
these to estimate the uncertainty associated with the model. The first step is to estimate the 
uncertainty associated with the fit parameters and the covariance between pairs of fit parameters. 
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Figure 27 : monte carlo output for coefficient a0 

This is done statistically. The uncertainty is determined by taking the sample standard deviation of 
the 1000 instances of each fit parameter. We get for the first band  

 

wl[nm] a0 a1 a2 a3 b1 b2 b3 
440 -2.76443 -0.77946 -0.28446 -0.02657 0.051998 0.011877 -0.00584 

wl[nm] c1 c2 c3 c4 d1 d2 d3 
440 0.00144 -8.4E-05 0.001911 0.001031 1.111408 2E+132 0.003075 

  p1 p2 p3 p4    
all 1.448495 18.99534 10.77744 9.002714    

 

Figure 28: Statistics for model 440 band (mean fit parameter from MCUA, standard deviation of the 1000 estimates, and 
the standard deviation expressed as a percentage of the mean value).  

 

 

 

It is also valuable to estimate the correlation coefficient of the different fit parameters for a single 
spectral band, or for the different spectral band for a given fit parameter. This is calculated using the 
standard formula for the sample Pearson correlation coefficient. 
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Figure 29: Correlation matrix 440 nm coefficients 

 

 

 

Figure 30: Low correlation between a0 and a1 

 

 

 

a0 a1 a2 a3 b1 b2 b3 c1 c2 c3 c4 d1 d2 d3 p1 p2 p3 p4
a0 1.000000 -0.539161 0.530155 -0.518675 0.070539 -0.123045 0.149257 0.031141 -0.007576 -0.029292 -0.057731 0.282807 -0.283089 0.248621 -0.404896 -0.404829 -0.319940 0.319177
a1 - 1.000000 -0.995087 0.982249 -0.129463 0.226003 -0.275749 -0.058253 0.034145 0.046046 0.113490 -0.515960 0.516468 -0.454136 0.731448 0.731092 0.579855 -0.578564
a2 - - 1.000000 -0.995748 0.137411 -0.242317 0.298290 0.060667 -0.039522 -0.046223 -0.127477 0.500355 -0.500858 0.436304 -0.714102 -0.714017 -0.562116 0.560846
a3 - - - 1.000000 -0.145271 0.259627 -0.323479 -0.064996 0.042775 0.048682 0.145481 -0.484153 0.484647 -0.419807 0.694384 0.694501 0.543619 -0.542380
b1 - - - - 1.000000 -0.886272 0.745499 0.009393 0.079067 0.029071 -0.060304 0.067467 -0.067538 0.063356 -0.093377 -0.093412 -0.071492 0.071398
b2 - - - - - 1.000000 -0.959775 0.002928 0.003774 0.066227 0.147046 -0.121846 0.121954 -0.104609 0.164763 0.164198 0.136932 -0.136656
b3 - - - - - - 1.000000 0.007164 -0.047092 -0.112758 -0.210064 0.145869 -0.145997 0.118802 -0.199157 -0.198383 -0.167309 0.166918
c1 - - - - - - - 1.000000 -0.402845 -0.053920 -0.019270 0.058748 -0.058770 0.055017 -0.051686 -0.050823 -0.050337 0.050590
c2 - - - - - - - - 1.000000 0.037962 -0.062008 -0.029820 0.029820 0.001789 0.019704 0.019199 0.023283 -0.023477
c3 - - - - - - - - - 1.000000 -0.388492 -0.038111 0.038130 -0.036052 0.040598 0.039759 0.039443 -0.039466
c4 - - - - - - - - - - 1.000000 -0.004544 0.004616 -0.009300 0.047189 0.049170 0.011108 -0.010816
d1 - - - - - - - - - - - 1.000000 -0.999999 0.627920 -0.717032 -0.690887 -0.894020 0.898366
d2 - - - - - - - - - - - - 1.000000 -0.628000 0.717719 0.691612 0.894047 -0.898389
d3 - - - - - - - - - - - - - 1.000000 -0.584447 -0.567397 -0.689432 0.689495
p1 - - - - - - - - - - - - - - 1.000000 0.998949 0.796552 -0.794968
p2 - - - - - - - - - - - - - - - 1.000000 0.769137 -0.767422
p3 - - - - - - - - - - - - - - - - 1.000000 -0.999948
p4 - - - - - - - - - - - - - - - - - 1.000000
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Figure 31: High correlation of 0.74 between b1 and b3 band 

 

Any high correlation (>0.5) suggests that the model is not well defined – i.e. that you could add 
something to one and compensate by removing it from the other. Such models can be hard to fit, so 
this may indicate the value of removing one of those parameters. Permanent evaluation of the MCUA 
results is part of the future work, when measurements become available. These results might 
ultimately result in an updated formulation of the model. Currently we don’t draw any conclusions on 
these results, as individual measurement uncertainties are not yet included, as well as the number of 
1088 measurements is limited to 2 years.  

 

A covariance matrix is calculated for the fit parameters by having on-diagonal terms equal to the 
square of the absolute uncertainty associated with that fit parameter and the off-diagonal terms equal 
to 𝑢�𝑎& , 𝑎A� = 𝑢(𝑎&)�𝑎A�𝑟�𝑎& , 𝑎A�. 

 

Figure 32: covariance matrix for all model coefficients of 440nm 

 

 

 

a0 a1 a2 a3 b1 b2 b3 c1 c2 c3 c4 d1 d2 d3 p1 p2 p3 p4
a0 3.430E-05 -3.642E-05 3.874E-05 -1.279E-05 1.947E-07 -5.325E-07 2.351E-07 4.567E-09 -1.126E-09 -5.044E-09 -9.766E-09 1.475E-01 -1.476E-01 3.070E-07 -1.432E-04 -1.279E-04 -1.524E-05 2.011E-08
a1 - 1.330E-04 -1.432E-04 4.770E-05 -7.039E-07 1.926E-06 -8.552E-07 -1.683E-08 9.996E-09 1.562E-08 3.781E-08 -5.299E-01 5.305E-01 -1.104E-06 5.094E-04 4.549E-04 5.440E-05 -7.179E-08
a2 - - 1.557E-04 -5.231E-05 8.082E-07 -2.234E-06 1.001E-06 1.896E-08 -1.252E-08 -1.696E-08 -4.594E-08 5.559E-01 -5.565E-01 1.148E-06 -5.380E-04 -4.806E-04 -5.705E-05 7.528E-08
a3 - - - 1.773E-05 -2.884E-07 8.079E-07 -3.663E-07 -6.854E-09 4.572E-09 6.028E-09 1.770E-08 -1.815E-01 1.817E-01 -3.727E-07 1.766E-04 1.578E-04 1.862E-05 -2.457E-08
b1 - - - - 2.222E-07 -3.087E-07 9.450E-08 1.109E-10 9.461E-10 4.030E-10 -8.211E-10 2.832E-03 -2.835E-03 6.297E-09 -2.658E-06 -2.375E-06 -2.741E-07 3.621E-10
b2 - - - - - 5.461E-07 -1.907E-07 5.419E-11 7.078E-11 1.439E-09 3.139E-09 -8.018E-03 8.026E-03 -1.630E-08 7.352E-06 6.546E-06 8.231E-07 -1.086E-09
b3 - - - - - - 7.230E-08 4.824E-11 -3.214E-10 -8.915E-10 -1.632E-09 3.493E-03 -3.496E-03 6.735E-09 -3.234E-06 -2.878E-06 -3.660E-07 4.829E-10
c1 - - - - - - - 6.272E-10 -2.561E-10 -3.970E-11 -1.394E-11 1.310E-04 -1.311E-04 2.905E-10 -7.816E-08 -6.866E-08 -1.025E-08 1.363E-11
c2 - - - - - - - - 6.443E-10 2.833E-11 -4.546E-11 -6.740E-05 6.741E-05 9.575E-12 3.020E-08 2.629E-08 4.807E-09 -6.411E-12
c3 - - - - - - - - - 8.646E-10 -3.300E-10 -9.979E-05 9.984E-05 -2.235E-10 7.208E-08 6.307E-08 9.434E-09 -1.248E-11
c4 - - - - - - - - - - 8.343E-10 -1.169E-05 1.187E-05 -5.664E-11 8.231E-08 7.662E-08 2.610E-09 -3.361E-12
d1 - - - - - - - - - - - 7.930E+03 -7.930E+03 1.179E-02 -3.856E+00 -3.319E+00 -6.476E-01 8.606E-04
d2 - - - - - - - - - - - - 7.931E+03 -1.179E-02 3.859E+00 3.323E+00 6.476E-01 -8.607E-04
d3 - - - - - - - - - - - - - 4.445E-08 -7.440E-06 -6.453E-06 -1.182E-06 1.564E-09
p1 - - - - - - - - - - - - - - 3.646E-03 3.254E-03 3.913E-04 -5.164E-07
p2 - - - - - - - - - - - - - - - 2.910E-03 3.375E-04 -4.454E-07
p3 - - - - - - - - - - - - - - - - 6.617E-05 -8.751E-08
p4 - - - - - - - - - - - - - - - - - 1.157E-10
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3.5.5 Calculating the uncertainty associated with the model 
 

The full model combines these spectral band observations with a spectral fit based on lunar rock 
reflectance measurements. In a later phase of this programme (future project) we intend to use 
hyperspectral observations of the moon to provide intermediate model values. For now, we are 
using existing data used in the GIRO model [RD2]. 

In the current iteration of the model we assume (erroneously, but in the absence of other 
information) that there is no uncertainty associated with the observations used in the spectral 
interpolation, nor with the interpolation process itself. Instead we will simply propagate our 
uncertainties by continuing the MCUA, creating 1000 hyperspectral moon models and considering 
the variability. Uncertainty associated with the spectral observations and interpolation will be 
included in later phases of the project. 

The irradiance is calculated for every input measurement used in the coefficient regression. The 
results per input measurement is the 1000x applied model. The irradiance is calculated using the 
instrument response curves.  

An example of this output is plotted, showing a normal like distribution (Figure 33). Such plot could 
be produced for every measurement and hence the mean and standard deviation is calculated.  

 

Figure 33: Distribution of the results for one input measurement of band 440nm 

 

 

The extended relative uncertainty is calculated from the standard deviation of the output 
distributions.   

𝑢�𝐸&,)� = 	𝑘 ∗
Z([+,-)

[+,-
  (8) 
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𝐸&,) is the measured irradiance value, before any perturbation is applied, 𝑢�𝐸&,)� is the relative 
uncertainty, k is the factor applied to obtain the required confidence interval for a normal 
distribution,  𝑠(𝐸&,)) is the standard deviation of all models results for this measurement. 

From the results, as shown in Figure 34, the uncertainty level is quite stable over phase angle, except 
for angles close to outside the model phase angle limits [-90.0:-2.0-2.0:90.0]. In the summarizing plots, 
the uncertainty values have been averaged per 5° phase angle. 

 

 

Figure 34: 95.5% uncertainty band 870nm 

 

 

Figure 35 up to Figure 40 show the uncertainty levels for all bands, averaged per 5 degrees. 
Uncertainty levels at 95.5 % (k = 2.0) and 99.7 % (k = 3.0) confidence level are shown, as well as the 
mean  𝐸&,) obtained averaged over 1000 results. This is not the irradiance from the “root” model 
output.  

When looking at the plots, one can see that for the 95.5% confidence interval, all bands perform well 
below 2 % except for band 440 nm.  

For the 99.7 % confidence level, all bands perform approximately at 2.5 % uncertainty, except for the 
400 nm and 500 nm bands, which are slightly above.  

The model and its uncertainties here are provided for the 1088 instrument. It must be noted that the 
Langley plots with the high uncertainty in the intercept are currently included in the fit. This is due to 
the fact that there are not enough data points after excluding these to satisfactorily fit the model. In 
the next phases of the project, it is intended that these will be removed as described in section 3.4. 
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Figure 35: Uncertainty levels for the 440nm band 

 

  

Figure 36: Uncertainty levels for the 500nm band 
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Figure 37: Uncertainty levels for the 675nm band 

 

 

Figure 38: Uncertainty levels for the 870nm band 
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Figure 39: Uncertainty levels for the 1020nm band 

 

 
Figure 40: Uncertainty levels for the 1640nm band 

 

3.5.6 Evolution of model uncertainties with number of measurements 
To get a clear understanding of the evolution of the uncertainty levels with respect to the amount of 
used measurements, the MCA is performed on both the 1088 measurements only and the 1088+933 
measurements. It appears that in general the uncertainty level stays the same for both regressions.  

There is a slight difference of around 0.2% with large positive phase angles and about 0.1% for specific 
low phase angles. This can be interpreted as very low differences. This has to be re-evaluated during 
the process of model iterations, when more 1088 measurements become available. Applying the 
uncertainty budgets from the 1088 instrument on the 933 instrument is not good practice and should 
be avoided. 
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Figure 41: Uncertainty level for both 1088 and 1088+933 model regression 

 

 

4 Conclusions 
 

This report has described the process involved in fitting a lunar-reflectance model to the measured 
Langley plot intercepts. The lunar-reflectance has been calculated using both the 1088 instrument 
specified, purchased, calibrated and installed as part of this project, and the 933 instrument that has 
been used for a longer period. A polarization model has also been established, based on the 
polarized observations from the 1088 instrument. Spectral interpolation has used the existing ROLO 
model. 

With the current uncertainty budget analysis, a full system uncertainty characterization has been 
performed. Based on the lab calibrations, uncertainties for the different measurement stages are 
identified : 

• Systematic uncertainties (common to all) 
• Uncertainties linked to instrument spectral band  
• Uncertainties linked to every measurements separately. 

A method has been derived to estimate the uncertainty for every measurement, based on the Langley 
fitting process. This algorithm has been plugged into the measurement facilities at the Izaña institute 
and will provide in the future a measurement specific uncertainty. In the next iteration, these 
individual uncertainties will also be plugged into the Monte-Carlo analysis, allowing for a more 
accurate characterization of the model uncertainties.  

With the current setup, using the estimated ‘average’ Langley uncertainties for every measurement 
(Table 7) the outcome of the Monte-Carlo analysis show a reasonably flat uncertainty value for all 
model spectral bands. The 95 % confidence interval shows an uncertainty level of 2 % or less for all 
bands. The 99 % gave uncertainties between  2.5% to 3% depending on the spectral band. We believe 
that, with increasing number of measurements from the 1088 instrument and more accurate 
uncertainty estimates, the levels of uncertainty will slightly decrease and flatten out. This is however 
to be confirmed in the next iteration. 
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In summary, future work to improve the model will include: 

• Obtaining additional measurements (6 years of data are required to cover the full range of 
different lunar cycles) 

• Improved spectral observations from the Pandora instruments used to develop spectral 
interpolation 

• Improved handling of negative polarization 
• Provision of an uncertainty associated with each Langley plot and a weighted fit that takes 

into account those uncertainties 
• Uncertainties associated with spectral interpolation 
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APPENDIX A – Dealing with logs in the uncertainty analysis 
It is not possible to apply the Law of Propagation of Uncertainties to a logarithm directly. The 
logarithm and exponential functions are highly nonlinear and in this case we do not have 
dimensionless quantities. If we just take a logarithm of the uncertainty, we get the wrong 
uncertainty for the logarithm of the value. Instead we calculate the uncertainty associated with the 
logarithm numerically. 

To understand this, we consider a simple quantity, 𝑦, which is the natural logarithm of the measured 
signal 𝑉, thus 

 

𝑦 = ln(𝑉) 

Therefore, we can write 

𝑉 = exp(𝑦). 

To evaluate an uncertainty, we perturb the measured signal, 𝑉 by a small perturbation, 𝛿𝑉. 

𝑉 + 𝛿𝑉 = exp(𝑦 + 𝛿𝑦) 

Taking a logarithm of both sides we get 

ln(𝑉 + 𝛿𝑉) = (𝑦 + 𝛿𝑦) 

And rearranging: 

𝛿𝑦 = ln(𝑉 + 𝛿𝑉) − 𝑦. 

We make 𝛿𝑉 equal to the uncertainty associated with the signal, and use the result 𝛿𝑦	as the 
uncertainty associated with the 𝑦-axis model process. 

To check for symmetry, try 𝛿𝑉 = +𝑢(𝑉) and 𝛿𝑉 = −𝑢(𝑉). For highly non-linear functions this may 
not be symmetrical. 

 

 

APPENDIX B – Fitting a straight line with uncertainty information 
In this case we consider fitting a straight line to measured data points with some associated 
uncertainties which may differ from point to point. The method described here calculates both a 
slope and intercept for the straight line and their associated uncertainties and covariance using the 
uncertainties associated with the y-values. There is assumed to be no uncertainty associated with 
the x-values.  

The calculation of the slope and offset is as follows: 
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The weights3 are defined as 

   (0.1) 

where  is the uncertainty associated with the measured value  at the set value .  

The reference values are given by 

  . (0.2) 

The slope is then calculated as 

   (0.3) 

and the intercept as 

  . (0.4) 

The variance (squared uncertainty) and covariance associated with the slope and intercept are given 
by 

   (0.5) 

 

APPENDIX C – Producing a covariance matrix for the input 
observations 

To do a full uncertainty analysis and a fit that fully takes into account the covariance at the lunar 
model fitting, we would need a covariance matrix for the input observations. We have an input 
observation model of 

𝐸&,) = 𝐸&,)
True × �1 + 𝑅&,)	�(1 + 𝑆))(1 + 𝐶)	 

A covariance matrix for the full set of observations (all bands, all actual measurements) would have 
as its diagonal the uncertainty associated with a single observation, squared, i.e. 

 

3 Because this term is squared in the subsequent equation, the actual weight is inversely proportional to the 
square of the uncertainty. 
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𝑢+�𝐸&,)� = �𝐸&,)
meas�+ ×  𝑢rel+ �𝑅&,)	� + 𝑢rel+ (𝑆)) + 𝑢rel+ (𝐶)¡ 

The covariance for two measurements on the same band would be 

𝑢�𝐸&,)A , 𝐸&,)%� = �𝐸&,)A
meas��𝐸&,)%

meas� ×  𝑢rel+ (𝑆)) + 𝑢rel+ (𝐶)¡ 

And the covariance for two measurements in different bands would be 

𝑢�𝐸&,)A , 𝐸&,)%� = �𝐸&A,)A
meas��𝐸&%,)%

meas� ×  𝑢rel+ (𝐶)¡ 

In practice because we have to do our model in terms of log reflectance, this model would first have 
to be propagated to reflectance (straightforward, analytic) and then to log reflectance (numerically). 

 


