An SI-traceable protocol for the validation of radiative transfer model-based BRDF simulation

Vincent Leroy, Sebastian Schunke, Yves Govaerts // Rayference Robin Aschan, Farshid Manoocheri // Aalto University Peter Woolliams // NPL

CEOS WGCV IVOS 35 // 27th September 2023 // DLR, Oberpfaffenhofen, Germany

Aalto University

Calibration concepts

- In metrology, calibration is the comparison of measurement values delivered by a device under test with those of a calibration reference of known accuracy.
- Such a reference could be
 - another measurement device of known accuracy,
 - a device generating the quantity to be measured,
 - or a physical artefact.

Calibration concepts

Calibration concepts

Vicarious calibration

RTM validation protocol

Prior attempts

Govaerts & Verstraete (1998) DOI: 10.1109/36.662732

Jaanson et al. (2018) DOI: 10.1109/TGRS.2017.2761988

- RTM: Raytran
- Target: grooved design ("waffle"), metallic material (strong specular reflective lobe)
- Material model: fitted Torrance-Sparrow

Prior attempts

Govaerts & Verstraete (1998) DOI: 10.1109/36.662732

• No uncertainty quantification

Jaanson et al. (2018) DOI: 10.1109/TGRS.2017.2761988

- Added SI-traceability and
 uncertainty quantification
- Metrics account for uncertainty

Our method

- RTM: Eradiate
- Target: two-layer design, diffuse coating
- Material model: data-driven tabulated BRDF model
- SI-traceable measurements, uncertainty quantification
- Metrics account for uncertainty

Target design: Controlled reflective peaks

Final design

Simulated reflectance

Selected material: As diffuse as possible

 $(\theta_{\text{ill}}, \lambda) = (0, 500)$ 90°

Selected material is as close to Lambertian as possible

- \Rightarrow Uniform, isotropic material
- \Rightarrow Simple data-driven BRDF model
- \Rightarrow No fitting: Reduced uncertainty

Selected material: As diffuse as possible

 $(\theta_{\rm ill}, \lambda) = (45, 500)$ 90°

Departure from Lambertian behaviour as illumination zenith angle increases

 \Rightarrow Source of uncertainty

Measurement facility: SI-traceable 3D goniophotometer

Lanevski et al. (2022) DOI: 10.1088/1681-7575/ac55a7

- Measures sample reflectance in 3D $(\theta_{\rm ill}, \varphi_{\rm sen}, \theta_{\rm sen})$ space
- Traceable to SI through reference absolute goniophotometer
- Sample alignment done manually w/ check vs reference goniometer ⇒ Additional, unknown uncertainty

Uncertainty propagation

- RTM runs are encapsulated in an uncertainty propagation application based on the CoMet library
- Monte Carlo method required: Highly dimensional state vector (1000+ variables)

Comparison method

Very good agreement near nadir

More discrepancies at higher zenith angles

Overall good pass rate

Similar performance in and out of the principal plane

Conclusions

- We present an RTM validation protocol using SI-traceable lab measurements on an artificial target.
- Major point: Improve material characterization and modelling (data-driven model) with careful material selection and manufacturing process control.
- Results show general agreement within 2σ (many samples w/ relative bias $\lesssim 2\%$).
 - Similar performance in and out of principal plane.
- Remaining issues:
 - Material reflectance data is sparse and misses critical data points.
 ⇒ Increased bias at high zenith values.
 - Sample alignment is manual and introduces hard-to-quantify uncertainty.

- Further iterate: Generate new material and artefact reflectance datasets learning from this iteration (improve material model and sample alignment).
- Extension: Develop a similar protocol for validation of satellite measurement simulation.

Outlook

This protocol: no atmosphere

Practical usage: atmosphere!

Outlook

BRF / Black-sky surface reflectance

All simulations done with

RADIATE

Visit www.eradiate.eu

Questions?

This project [19ENV07 MetEOC-4] has received funding from the EMPIR programme co-financed by the Participating States and from the European Union's Horizon 2020 research and innovation programme.

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

Metrology for Earth