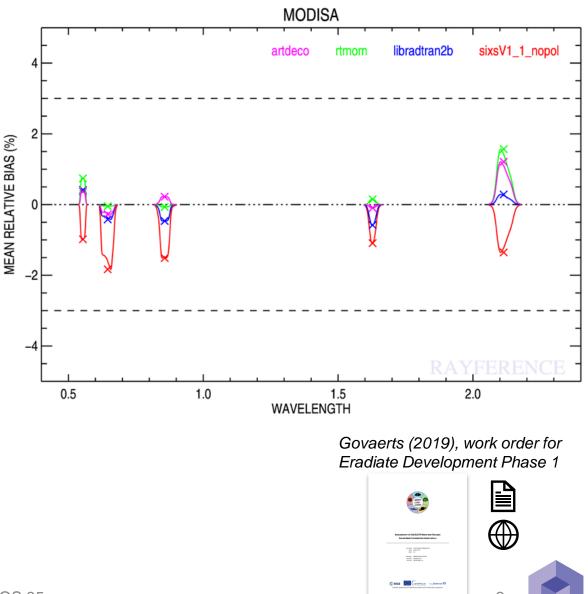
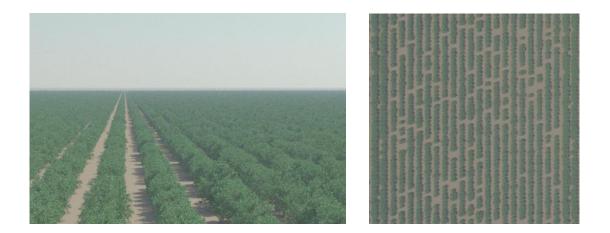
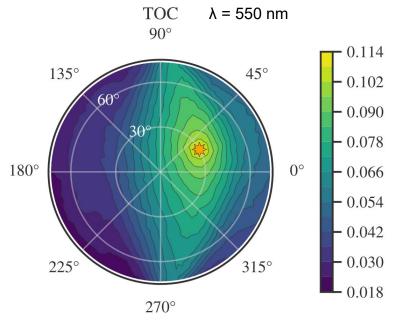


A radiative transfer model for the Earth observation community


Vincent Leroy, Yves Govaerts, Yvan Nollet, Sebastian Schunke, Nicolas Misk // Rayference

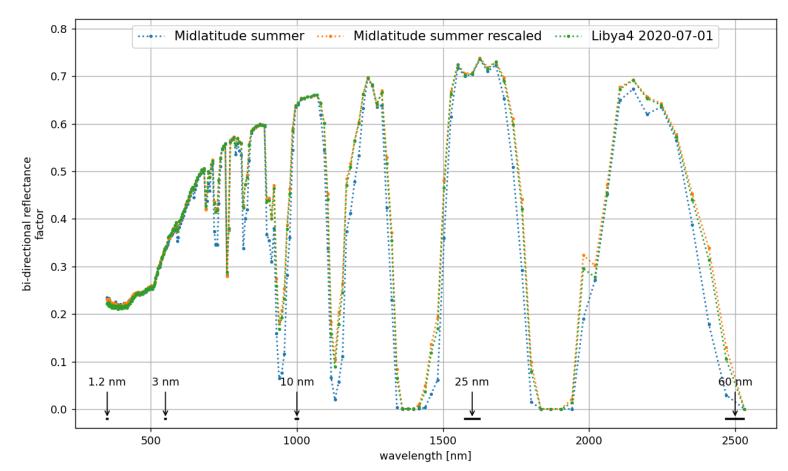
CEOS WGCV IVOS 35 // 27th September 2023 // DLR, Oberpfaffenhofen, Germany


The root cause: cal/val requires more accurate RTMs

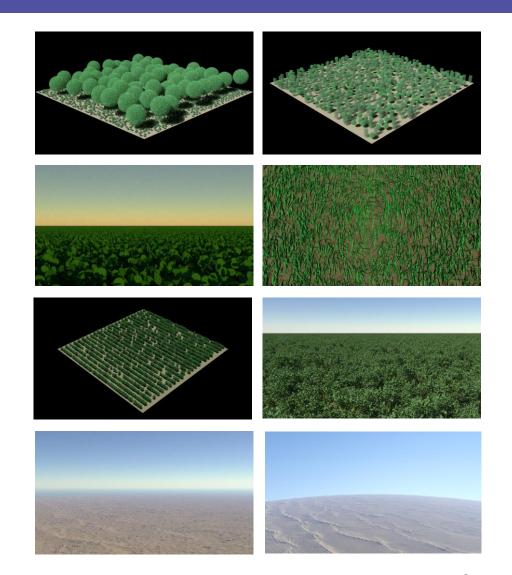

- Modern instruments can reach an accuracy of 2-3% and better
- We use RTMs as part of the calibration process in many cases
- Depending on the one you pick, you won't get the same result
 - Even if you set up the same simulation
 - Uncertainty can go up to 3-4%
 - Attributable to many different factors; an important driver is the atmospheric molecular absorption modelling (usage of standard profiles, without accounting for molecular concentration changes)

The root cause: cal/val requires more accurate RTMs

- Most RTMs currently used for cal/val applications assume a plane-parallel geometry with a flat surface
 - Earth is not flat!
 - It has relief and objects at its surface

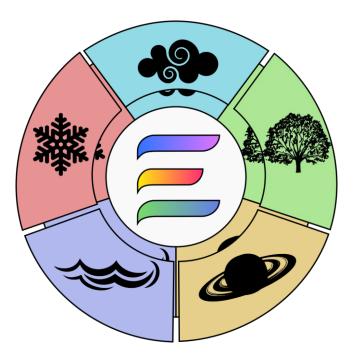


This is why we started building Eradiate But how do we build such a model?


Atmospheric modelling

- Correlated k-distribution method
 - Very common (flexible, simple, reasonably accurate)
 ⇒ easy to compare to other RTMs
- Support of detailed thermophysical profiles
 - Standard profiles (AFGL 1986)
 - Molecular concentration rescaling
 - Fully customizable profiles (arbitrary input, *e.g.* CAMS data)

3D surface modelling


- Vegetation: detailed plant modelling
- Relief: support for digital elevation models
- Planetary curvature: spherical-shell geometry
- Arbitrary complexity
 - \Rightarrow Monte Carlo ray tracing is the way

Breaking walls between communities

- RT modelling is done by compartmentalized subcommunities
 - ⇒ many models, generally with a specific focus
 ⇒ highly accurate modelling requires
 convergence
- Very impressive work on software infrastructure by computer graphics community
 ⇒ import technology from there
 ⇒ Eradiate's radiometric kernel is rendering software
- Modular architecture: easy to add new components without knowing/breaking everything

Beyond physics: Software engineering

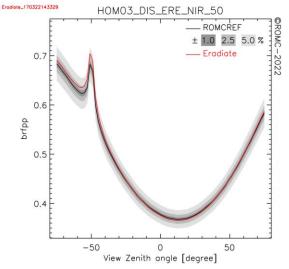
It's cal/val: traceability matters

- Data traceability: explain where shipped data comes from
- Algorithm transparency: it's fully open-source

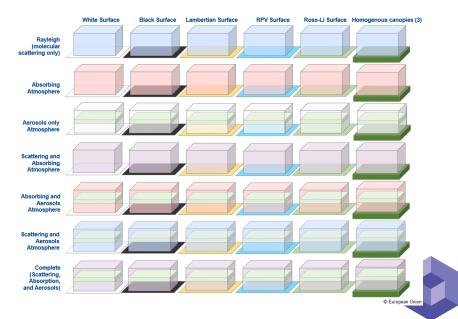
the radius of the blackbody (*R*) is set to the solar radius constant ($695.7 \cdot 10^6$ km) and the distance of the blackbody to the Earth (*D*) is set to 1 astronomical unit ($149.5978707 \cdot 10^6$ km) which is the average Sun-Earth distance. The wavelength range extends from 280 nm to 2400 nm to cover Eradiate's wavelength range.

coddington_2022-*

This is the version 2 of the Total and Spectral Solar Irradiance Sensor-1 (TSIS-1) Hybrid Solar Reference Spectrum (HSRS).


- Wavelength range (in vacuum): 202 nm to 2730 nm
- Spectral resolution: 0.01 nm to ~0.001 nm (variants are also provided at lower, fixed, spectral resolution).
- Time range: representative of a 1-week average from Dec 1, 2019 to Dec 7, 2019
- Uncertainty:
 - $_{\odot} \leq 400$ nm: 1.3%
 - [400, 460] nm: 0.5%
 - [460, 2365] nm: 0.3%
 - $^{\circ} \geq 2365$ nm: 1.3%

coddington_2022-fse*


This is the Full Spectrum Extension (FSE) of the version 2 of the Total and Spectral Solar Irradiance

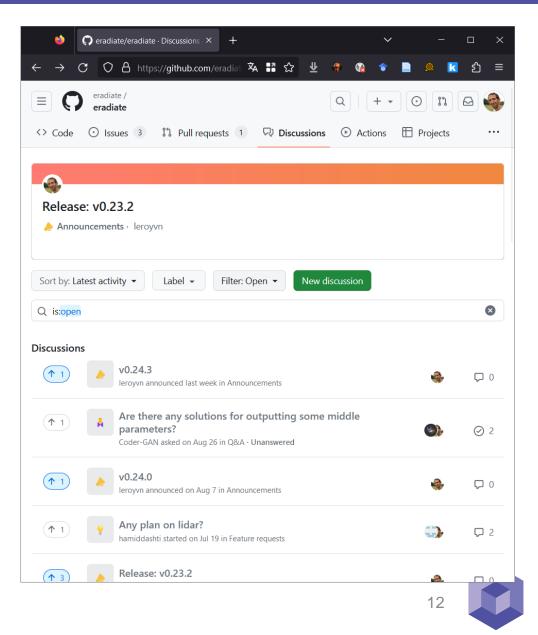
- Regular and systematic testing
 - Unit tests for individual components
 - Larger use case-based system tests
- Benchmarking
 - RAMI series (ROMC / RAMI-V / RAMI4ATM)
 - Extension to more relevant benchmarks (*e.g.* IPRT)

ROMC DEBUG mode compares RT model simulations against already published RAMI results. To obtain unambiguous proof of an RT model's performance use the ROMC VALIDATE mode.

Usability in mind

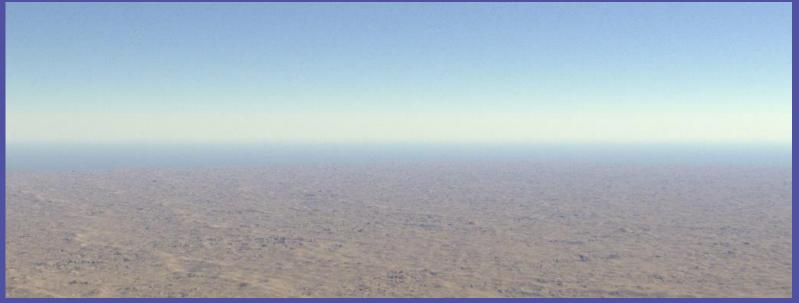
Highly customizable input Python API

- NetCDF-centric workflow
- Easy to bring your own data
- Interactive usage
 ⇒ Jupyter notebooks
 - Scriptable
 ⇒ write you own app


Smooth learning curve

- Thorough documentation
- Progressive tutorials

<pre>exp = ertxp.OneDimExperiment(surface=ertsc.bsdfs.RPVBSDF(), atmosphere=ertsc.atmosphere.MolecularAtmosphere.afgl 1986(),</pre>	results	Spectral loop [710:15]: 48/48 00:05, ETA=00:00 : xarray.Dataset > Dimensions: (sza: 1, saa: 1, w: 3, y_index: 1, x_index: 31, srf_w: 22) > Coordinates: (13)			
<pre>spectral_cfg={ "configurational 22-mainFill </pre>	radiance	(sza, saa, w, y_index, x_index)	float64 0.09475 0.0949		
"srf": "sentinel_2a-msi-5", "bin_set": "10nm",	spp	(sza, saa, w)	float64 1e+03 1e+03 1e+03	22	
},	irradiance	(sza, saa, w)	float64 1.412 1.39 1.349	8	
spp=1000,	srf	(srf_w)	float64 0.0 0.02836 0.123	8	
),	brdf	(cza cza w v index v index)	float61 0.06711.0.06722		


It's built for the community

- Open-source (LGPL) hosted on GitHub
- Contributions welcome
 - Request features or datasets
 - Issue/bug reports
 - Improvements and fixes to documentation / code
 - Additional data
- A problem? Come and open a discussion!

Visit eradiate.eu Follow us on GitHub <u>github.com/eradiate/eradiate</u> Subscribe to our newsletter

Libya-4 DTM with nonabsorbing atmosphere

Built with support from

