

Instrumented site for TIR CalVal

STUDY ON LA CRAU SITE

September 2023

Morgane Chapelier, Sébastien Marcq, Emilie Delogu, Aimé Meygret - CNES

CEOS WGCV IVOS 35, Oberpfaffenhofen, Germany 28/09/2023

Context

- TRISHNA, LSTM, SBG
- Existing network for LST
- Need for a denser network
 - > that provides L_{TOA}
 - with evaluated uncertainty for each site
 - with a demanding requirement on TOA radiance (0.5K)

Impact of uncertainty sources ?

- > Atmosphere
- Emissivity
- Temperature (retrieved from radiometer measurements)

\rightarrow Study on LaCrau site

JPL TIR radiometer installed in LaCrau

GCU: Global Change Unit, University of Valencia
KIT (Karlsruhe Institute of Technology) stations

325

312

299

286

273

< 260

erra/MODIS

ean

Ξ

Location of ground observational networks currently used to validate standard LST products derived from US and European spaceborne instruments.

Installed Single (10)

USCRN: US Climate Reference network

End-to-end simulation

Radiative transfer equation

$$L_{TOA} = L_{atm}^{\uparrow} + \tau^{\uparrow} \left(\epsilon L_{BB}(T_S) + (1 - \epsilon) L_{atm}^{\downarrow} \right)$$

- General assumptions
 - Lambertian surface
 - Nadir satellite

Known » quantities

- Atmospheric profiles (ECMWF)
 - + RTTOV with IASI spectral bands: $L_{atm}^{\uparrow}(\lambda)$, $L_{atm}^{\downarrow}(\lambda)$, $\tau^{\uparrow}(\lambda)$
- > Surface emissivity $\epsilon(\lambda)$ (Labed 91 for LaCrau soil)
- Radiometer measurement L_{radiometer}
- Derived quantities
 - > Estimated surface temperature \tilde{T}_S
- **True quantities : known quantites + uncertainty,** T_s

Choices for this study

Atmospheric profiles

- LaCrau 2022 monthly average, 1 pm (ERA5 reanalysis)
 - January (driest month), July (hottest), October (wettest)
- Uncertainty: white gaussian noise with following std
 - 10% for WV content (per pressure level)
 - o 20% for ozone content (per p.l.)
 - o 0.8K for temperature profile (per p.l.)

Emissivity

- LaCrau soil (Labed & Stoll 1991)
- Uncertainty: white gaussian noise with following std
 - o 0.02 (for each discretized λ)
 - o 0.01 (for mean emissivity)

Temperature

> T_{skin} (ECMWF)

Radiometer

Uncertainty: white gaussian noise with following std

o 0.02 W/m²/sr/µm (0.1-0.2K)

Summary

- ✤ 1. Atmosphere : impact of uncertainty on atmospheric profiles alone
- ✤ 2. Emissivity : impact of uncertainty on emissivity alone
- 3. Instrumented site : impact of all considered sources of uncertainty

ATMOSPHERE IMPACT OF UNCERTAINTY ON ATMOSPHERIC PROFILES ALONE

Uncertainty on WV content only (10%)

- 20 draws
- ✤ January and July
- Test with:
 - Noised atmosphere vs reference atmosphere
 - > Noised atmosphere vs corrected reference atmosphere (same integrated WV content)

up com

13

12

TIR INSTRUMENTED SITE

RMSE on L_{TOA} (%)

8 © cnes

Uncertainty on WV content (10%), ozone (20%) and temperature (0.8K)

- 60 draws
- January, July and October
- Test with:
 - Noised atmosphere vs reference atmosphere
 - > Noised atmosphere vs corrected reference atmosphere (same integrated WV content)

Integrated WV content January: 0.86 g/cm²

January:	0.86 g/cm
July:	2.6 g/cm ²
October:	2.7 g/cm ²

TIR INSTRUMENTED SITE

· · · cnes ·

RMSE on *L*_{*TOA*} (%)

TIR INSTRUMENTED SITE

cnes

RMSE on *L*_{*TOA*} (%)

Results

- ~4% RMSE on L^{\uparrow} and L^{\downarrow} , ~2% on τ^{\uparrow} . Divided by 2 with corrected integrated WV content.
- Uncertainties compensate each other in L_{TOA} computation.
- ◆ 0.05% to 0.25% RMSE on *L*_{TOA}.
- Up to 0.1% improvement with corrected integrated WV content. No improvement in January.

EMISSIVITY IMPACT OF UNCERTAINTY ON EMISSIVITY ALONE

Uncertainty on emissivity only (0.02 on each value, 0.01 on mean ϵ)

- 100 draws
- All months

cnes

 $L_{TOA}(\lambda)$

 $L_{atm}^{\uparrow}(\lambda) \ L_{atm}^{\downarrow}(\lambda) \ au^{\uparrow}(\lambda)$

 T_s , $\epsilon(\lambda)$

Results

- ✤ 1-1.5% RMSE.
- ***** RMSE lower if L^{\uparrow} is a greater part of L_{TOA} (October)

· · · cnes · ·

Uncertainty on emissivity and atmosphere / Results

- Emissivity : 100 draws
- Atmosphere : 60 draws

- ✤ 1-1.5% RMSE.
- No improvement with corrected integrated WV content.
- Atmospheric uncertainties impact is negligible compared to emissivity uncertainties impact.

INSTRUMENTED SITE IMPACT OF ALL CONSIDERED SOURCES OF UNCERTAINTY

Numerical set up

- 60 x 50 scenarios (atmosphere: 60 draws ; emissivity: 50 draws) for a given ECMWF atmospheric profile and a given emissivity spectrum.
- Single true surface temperature T_S for all scenarios (assumed to be unknown).

For each scenario:

- → true L_{TOA} for each scenario (60x50 values)
- \succ *L_{radiometer}* computation with true quantities + ISRF
- > + noise on $L_{radiometer}$ (5 draws) → known value

Noise on radiometer measurement: 0.02 W/m²/sr/µm (0.1-0.2K)

Numerical resolution

- ✤ 60 x 50 scenarios (atmosphere: 60 draws ; emissivity: 50 draws) for a given ECMWF atmospheric profile and a given emissivity spectrum.
- Single true surface temperature T_S for all scenarios (assumed to be unknown).
- ✤ For each scenario:
 - → true L_{TOA} for each scenario (60x50 values)
 - L_{radiometer} computation with true quantities + ISRF
 - + noise on $L_{radiometer}$ (5 draws) → known value
 - > Surface temperature estimation \tilde{T}_S (60x50x5 cases)
 - > TOA radiance estimation \tilde{L}_{TOA}
 - ► Comparison \tilde{L}_{TOA} vs L_{TOA}

 $L_{TOA}(\lambda)$

Additional assumptions

- Emissivity extrapolation
 - To match radiometer bandwidth
- Ground-Radiometer radiative transfer
 - \succ L^{\downarrow} same as ground-TOA RT
 - $\succ L^{\uparrow} \approx 0$

 \succ $\tau^{\uparrow} \approx 1$

Test with Modtran : 0,0057 K error

Results

- ✤ 1-1.5% RMSE (0.5-1 K)
- **No improvement with corrected integrated WV content.**

CONCLUSION

Conclusion

With the considered uncertainty values:

- Atmospheric uncertainties are negligible compared to emissivity uncertainties.
 - No need for an accurate in-situ atmosphere characterization
- Correcting the integrated WV content is not necessary.
- Emissivity uncertainties drive the overall uncertainty.
- ✤ L_{TOA} RMSE seems lower for « wet » months

Future work

- **TOA RMSE** values for each spectral band of a given instrument
- Application to other sites:
 - Contractor support (KO 21/09/2023)
 - > Data provided by KIT for Lake Constance and Gobabeb
 - Lake Tahoe and Russel Ranch information could also be used (JPL)
- Spatial variations (emissivity and temperature) / different FoV (radiometer vs spatial instrument)
- Spatial variations (ECMWF atmospheric profiles)
- Temporal variations (emissivity evolution, turbulence)
- Multispectral TIR radiometer
- Emissivity directional effects estimation
- Environmental effects