Vicarious Calibration Activity Over Southern Israel for the **New Family of Orbital Hyperspectral Sensors**

Daniela Heller Pearlshtien, Eyal Ben-Dor **Tel Aviv University**

Outline

- The areas and theirs general characteristics
- Sensors used
- Spectral library (airborne 1.5m sensor, field measurements)
- Validation points
- Comparison between orbital sensors performances
 Radiometrically Spectrally and thematically
- PRISMA first image as an example
- Thermal capacity
- Call for collaboration
- Conclusions

VAL Site- Makhtesh Ramon

CAL Site- Amiaz Plain

CAL/ VAL TEST SITES ISRAEL

Amiaz plain

Radiometric calibration

Goal

Makhtesh Ramon

Establishing of Amiaz plain and Makhtesh Ramon as Vicarious Sites for Radiometric, Spectroscopic and Thematic Calibration of hyperspectral sensors

Spectral & Thematic calibration

Amiaz Playa

Homogeneous bright playa of silty carbonate, easy to access, ideal SVC for HSR sensors

Makhtesh Ramon national park

Spectral – Thematic Calibration Eroded Anticline with many minerals exposed at the surface aceoss a very short distance

Stability over time

ASD Field Spec4 Vs.FS3 – AP August 2022-2021

Airborne Campaign

Makhtesh Ramon

Sensor:		AisaFENIX 1	IK (SPECIM)	
Spectral range:	VNIR:	375-980 (175 bands)		
	SWIR:	970-2500 (245	5 bands)	
Field of View (FO	VV) :	40°		
Full-Width Half Ma	x (FWHM)	: VIS- 3.4, NIR-9	SWIR 6.2	
Bands:		420		
Spatial resolution	1.	5m		
Lines :		25 MR+1 AF	Atmosph (Brook an	
Amiaz plain - /	ASD spectra	al library		
0.5 0.5 0 400 700 1000 W 	1300 1600 avelenngth (nm) pund — ASD_N — ASD_N	1900 2200 2500 let13 let50		
ASD_Net100			and the second	

Aisa-ES

Airborne & Field Campaign products

- Thematic mineral maps:
 - Iron oxides (Hematite and Goethite).
 - clay minerals (Kaolinite, Montmorillonite).
 - sulfate minerals (Gypsum).
 - carbonate (Calcite, Dolomite).
 - QA- AISA FENIX field survey with experts, ground truth, routine spectral measurements, Meta data and geology and geomorphology GIS layers.

Current and future Users

ISA – Israel Space Agency (Venus)
ASI – Italian Space Agency (PRISMA)
ESA – European Space Agency (CHIME)
DLR – German Space Agency (DESIS, ENMAP)
NASA – National Space Administration (EMIT, SBG)

Updating spectral measurements by TAU every 4 months

More Users are Welcome

Minerals MR AISA-FENIX

Test sites Locations

Field ASD vs. FENIX 1K

MR Spectral library

Specific Targets form AisaFENIX 1.5 m AisaFENIX REF resampled to 30 m

For spectral calibration

Option 1 Option 2 ?

Link for Ramon Spectral Library

https://storymaps.arcgis.com/stories/bb5bf09ec74144 54a012bfe9bf4b8545

CAL / VAL TEST SITES ISRAEL

Comparison of HRS Sensor Products

Using CAL/VAL Test Sites

SENSORS COMPARISON

Objectives

1

To Evaluate hyperspectral sensors performances: Radiance, spectral and Thematic.

 To find suitable pair hyperspectral sensors for cross-calibration.
 To ensure optimal outcomes for the data applications when using multiple sensors.

To help the end users effectively select the most suitable sensor

4 for their specific mapping requirements.

90X90 Cube Outlines Measurements

01TOA RADIANCE L1 PRODUCT AMIAZ PLAIN

POSITION OF ATMOSPHERIC ABSORBANCE MODTRAN VS. EnMAP, PRISMA, EMIT, and DESIS

Gases and	MODTRAN	Expected width	EnMAP	PRISMA	EMIT	DESIS	-
Water Vapor	MODIKAN	(nm)	(nm) (nm)		(nm)	(nm)	
O2	687	687-695	692	690	693	688	-
	760	760-768	763	761	760	763	∆+:
	1268	1262-1269	1271	1262	1267		
CO2	1601	1599 - 1611	1609	1606	1610		
	2004	1999-2008	2005	2001	2004		Δ +4
	2055	2050-2071	2060	2061	2056		∆+
O3	574	550-640	571	563	574	574	
	602		594	588	589	602	
CH4	1666	1665 - 1667	1664	1667	1662		
H20	820	787 - 884	824	824	820	820	
	940	884-990	936	941	939	934	∆+5
	1135	1063 - 1219	1128	1131	1126		∆+5

MR Routine sites for Spectral Stabilization

1. Brown questa (BQ) -VNIR

2. Laccolite -VNIR

3. Gypsum mine - SWIR1

6. Calcite - SWIR2

5. Kaolinite mine - SWIR2

REFLECTANCE

02

MR TEST SITES

PRI Lac

(b)

Test Site 4 - Gypsum fans

- EMIT Lac

EnMAP Lac

2450

ASD Lac

(c)

1400

Wavelength (nm)

PRI Kao

(e)

1750

EMIT Kao

2450

- EnMAP Kao

2100

Test Site 5 - Kaolinite

0

----- ASD Kao ----

350

700

- DESIS Kao

1050

Sensor	Spectral range	No. bands	Test site	\mathbf{SAM}	ASDS
DEISIS	VNIR	210	1	0.078	0.100
	VNIR	210	2	0.101	0.052
EnMAP	VNIR	100	1	0.070	0.020
	VNIR	100	2	0.092	0.028
	SWIR1	19	3	0.005	0.036
	SWIR1	19	4	0.006	0.007
	SWIR2	52	5	0.066	0.070
	SWIR2	52	6	0.038	0.001
PRISMA	VNIR	63	1	0.062	0.014
	VNIR	63	2	0.070	0.034
	SWIR1	32	3	0.038	0.096
	SWIR1	32	4	0.040	0.002
	SWIR2	47	5	0.251	1.217
	SWIR2	47 calcit	e 6	0.202	0.375
EMIT	VNIR	84	1	0.055	0.031
	VNIR	84	2	0.072	0.058
	SWIR1	41	3	0.013	0.079
	SWIR1	41	4	0.027	0.007
	SWIR2	61	5	0.041	0.098
	SWIR2	61	6	0.037	0.100

Threshold for good calibration: SAM / ASDS< 0.1, RMSE< 0.05

03

MAPPING PERFORMANCE

Statistical analysis of PRISMA products

TPR = True detection for SENSOR

True detection AisaFENIX

FPR = False positive SENSOR

Negative+ FP SENSOR

GOETHITE-VNIR MAPPING

GOETHITE MAPPING (2)

AISA + ground ASD – reference

Sensors	TPR	FPR	Accuracy
DESIS	0.71	0.002	0.96
EnMAP	0.95	0.030	0.97
PRISMA	0.94	0.030	0.96
EMIT	0.80	0.020	0.96

GYPSUM-SWIR 1 MAPPING

696000

684000

Legend

Gypsur

337

Value

684000

GYPSUM MAPPING (2)

Sensors	TPR	FPR	Accuracy
EnMAP	0.98	0.045	0.97
PRISMA	0.98	0.002	0.98
EMIT	0.97	0.001	0.98

KAOLINITE-SWIR 2 MAPPING

1:125,000

68400

EnMAP Makhtesh-Ramon Kaolinite

672000

A

660000

0 1 2

4 6

ilometers

(c)

666000

337

684000

1:125,000

696000

684000

EMIT Makhtesh-Ramon Kaolinte

684000

678000

672000

0 1 2

4

6 8

Kilometers

(d)

KAOLINITE MAPPING (2)

Sensors	TPR	FPR	Accuracy
EnMAP	0.98	0.050	0.95
PRISMA	0.97	0.240	0.80
\mathbf{EMIT}	0.90	0.050	0.94

Comparison PRISMA L2, AisaFENIX to USGS

(a)

(d)

- There is a significant shift in Calcite absorbance location at PRISMA (29 nm).
- There may be a malfunction in atmospheric correction for the long SWIR wavelength at the L2 process.

Stability of geolocation of PRISMA L2,

Years compared			SD X	SD Y
2019–2020	16.8	19.7	0.69	0.37
2020–2021	243.1	66.9	0.75	1.13
2021–2022	16.9	18.3	0.43	0.23
2019–2022	238.6	95.1	0.51	1.18

Average of 200 GCP in the image

30m = 1 pixel

MR: Thematic Mapping in the Thermal (LWIR) Region

341-5510"E

34152°30"E

34°57'30"E

CONCLUSIONS

EnMAP, PRISMA, EMIT, and DESIS performed well in the VNIR region in terms of thematic mapping.

EnMAP, EMIT, and PRISMA performed well across the SWIR region up to 2300 02 nm, where PRISMA L2D signal is less accurate.

EMIT had the best L2 (reflectance) product, providing a smooth and accurate signal without the need for pre/post-processing.

04 AP and MR can be use ,not only for optical AL/VAL process, but also for thermal sensors (mainly in MR)

Call for Collaboration

On November 2023 we will conduct a workshop at the dead sea science center for those who are interested in cal/val of HSR sensors in general and for those who want to visit, measure and sample MR and AP test sites

Partial support is available from the Lowey International School – TAU

Interested fellows, please contact: <u>bendor@post.tau.ac.il</u>

Thank you

