IMAGE TRANSFORMATION BETWEEN (IMAGING) SPECTROMETERS

Andreas Baumgartner, Claas Köhler, Thomas Schwarzmaier

Airborne vs satellite imaging spectrometer

- Same working principles and similar calibration challenges
- Lab calibration of space instruments only before launch
- Airborne instruments come back to the lab
- More time to calibrate airborne instruments than for space instruments
- We can learn a lot from airborne instruments that is applicable to satellite systems

Calibration Home Base (CHB)

- Operational since 2007
- Designed for typical airborne imaging spectrometers:
	- Spectral range: 350 nm 2500 nm
	- Bandwidth: > 0.5 nm
	- \blacksquare IFOV: >0.1 mrad
	- \blacksquare FOV: $\pm 20^\circ$
- Setups for calibration of
	- **EXALGERIER Angular, spectral and radiometric response**
	- Polarization
	- **E** Non-linearity
	- **EXEC** Temperature sensitivity
	- **E** Stray light
- Highly automated
- Partly funded by ESA as calibration lab for APEX
- Used with other instruments: DLR's HySpex, LMU's specMACS, …

Neo HySpex VNIR-1600

- Commercially available instrument
- Used together with HySpex SWIR-320m-e
- Airborne campaigns 2012 2020
- 2020: replaced by new HySpex instruments

 $@$ 1000 m distance

Andreas Baumgartner, 27.09.2023 HySpex mounted in DLR airplane

HySpex VNIR-1600 Level-1 Calibration Chain

HySpex VNIR-1600 Level-1 Calibration Chain

Geometric Calibration Results

- > 10,000 individual collimator measurements (~16 h)
- Determination of Angular Response Function (ARF) of each pixel
- In contrast to existing methods no analytical function is fitted:
	- Cubic spline interpolation
	- **Center angle: Median**
	- Resolution: Width of area containing 75 % of total collected energy

Spectral Calibration Results

- Derived from > 31,000 individual monochromator measurements (~2 days)
- Determination of Spectral Response Function (SRF) of each pixel
- Lower spectral resolution at the right detector edge
- Distortion of SRFs at center channels caused by spectral long pass filter mounted on upper detector half
- Simulations show that assuming Gaussian responses can introduce significant uncertainties

8

Non-uniformity Correction

- We have a very good understanding of the spatial and spectral properties (3D instrument pixel response function)
- But individual pixel information
	- \blacksquare is lost after orthorectification
	- would be cumbersome to deal with in higher level products
		- -> Pixel properties are often assumed to be constant
- A method is needed to homogenize not only SRF and ARF centers but also their shape

Baumgartner, Andreas and Köhler, Claas Henning (2020) **Transformation of point spread functions on an individual pixel scale.** Optics Express, 28 (26), pp. 38682-38697. Optical Society of America. DOI : 10.1364/oe.409626

Imaging Equation

Image L_i^A = radiance field L_λ is weighted by spectral and angular response function of each pixel f_i^A

For simplicity only spectral case is shown

Goal: Converting Data from System A to System B

Problem: Find a matrix K that maps each pixel in column vector L^A to all pixels of column vector L^B (a row of K maps all pixels of L^A to a pixel of column vector L^B)

Remember: Each pixel has individual spectral and geometric properties

New Approach: Using Cross-Correlations to Find Transformation Matrix

Converting vector L^A to L^B is same operation as converting matrix \mathcal{C}^{AA} to \mathcal{C}^{BA}

$$
\boldsymbol{L}^B = \boldsymbol{K} \cdot \boldsymbol{L}^A
$$

$$
\boldsymbol{C}^{BA} = \boldsymbol{K}\boldsymbol{C}^{AA}
$$

- C^{AA} : Cross-correlation matrix of sensor A pixels with sensor A pixels
- C^{BA} : Cross-correlation matrix of sensor B pixels with sensor A pixels

$$
\boldsymbol{C}_{ii'}^{AA} = \int_0^{2\pi} \int_0^{\infty} f_i^A(\beta, \lambda) f_{i'}^A(\beta, \lambda) d\lambda d\beta
$$

$$
\boldsymbol{C}_{ji}^{BA} = \int_0^{2\pi} \int_0^{\infty} f_j^B(\beta, \lambda) f_i^A(\beta, \lambda) d\lambda d\beta
$$

Determination of Transformation Matrix

$$
\boldsymbol{C}^{BA} = \boldsymbol{K}\boldsymbol{C}^{AA}
$$

Using Tikhonov regularization to stabilize ill-posed problem

$$
\hat{\boldsymbol{K}} = \arg \min_{\boldsymbol{K}} \left\{ \left\| \boldsymbol{K} \boldsymbol{C}^{AA} - \boldsymbol{C}^{BA} \right\|_2^2 + \gamma^2 \left\| \boldsymbol{K} \boldsymbol{\Gamma} \right\|_2^2 \right\}
$$

 Γ : Tikhonov matrix \rightarrow discrete Laplacian \rightarrow penalize high frequencies γ: Regularization parameter (here $\gamma^2 = 10^{-11}$)

15 Andreas Baumgartner, 27.09.2023

Simulation

- **E** Ideal sensor with
	- Gaussian response functions
	- Constant sampling distance
	- \blacksquare Constant FWHM = 5 nm
- High resolution test scene
- Individual simulation of each pixel (ARF + SRF) using cubic splines

 $L_i = \int_0^{2\pi} \int_0^{\infty} f_i(\beta, \lambda) L_{\lambda}(\beta, \lambda) d\lambda d\beta$

Simulation Results

- ~1.4 Channels / FWHM
- Better agreement, since also the SRF shape is transformed

Uncertainties

- Linear operation -> geometric and spectral uncertainties propagate linearly
- Covariances can be propagated by

$$
\Sigma^{\mathcal{B}} = K \Sigma^{\mathcal{A}} K^{\mathcal{T}}
$$

New HySpex VNIR-3400N Instrument

- Compared to VNIR-1600
	- Similar optics
	- Detector with ~10 x pixels
- 700 spectral channels
- 3408 spatial pixels
- Spectral oversampling 3 7
- Spectral sharpening (super-resolution) at certain channels
- After transformation 1338 x 296 pixels
- Ongoing work

Conclusion and Outlook

- Correction of smile, keystone and pixel individual response function shapes in one processing step
- It is possible to get "perfect" data from not so perfect instruments
- Building instruments with more pixels can reduce requirements and therefore costs, while increasing performance
- Transformation algorithm can also be used to convert images between instruments: E.g., EnMAP to Sentinel-2, field-spectrometers, etc.
- Works also with snapshot instruments

Ongoing/future research

- Combining stray light correction matrix with transformation matrix
- Optimizing regularization method
- Uncertainty of under sampled data
- Adding along-track transformation

Simulation Results

HySpex VNIR-1600 Level-1 Calibration Chain

