IMAGE TRANSFORMATION BETWEEN (IMAGING) SPECTROMETERS

Andreas Baumgartner, Claas Köhler, Thomas Schwarzmaier

Andreas Baumgartner, 27.09.2023

Airborne vs satellite imaging spectrometer

- Same working principles and similar calibration challenges
- Lab calibration of space instruments only before launch
- Airborne instruments come back to the lab
- More time to calibrate airborne instruments than for space instruments
- We can learn a lot from airborne instruments that is applicable to satellite systems

Calibration Home Base (CHB)

- Operational since 2007
- Designed for typical airborne imaging spectrometers:
 - Spectral range: 350 nm 2500 nm
 - Bandwidth: >0.5 nm
 - IFOV: >0.1 mrad
 - FOV: ±20°
- Setups for calibration of
 - Angular, spectral and radiometric response
 - Polarization
 - Non-linearity
 - Temperature sensitivity
 - Stray light
- Highly automated
- Partly funded by ESA as calibration lab for APEX
- Used with other instruments: DLR's HySpex, LMU's specMACS, …

Neo HySpex VNIR-1600

- Commercially available instrument
- Used together with HySpex SWIR-320m-e
- Airborne campaigns 2012 2020
- 2020: replaced by new HySpex instruments

Parameter	Value
Spectral Range	410–1000 nm
Spectral Resolution	~ 5 nm
Spatial Columns	1600
Spectral Channels	160
Field of View	34.5 °
Min. GSD	0.44 m [*]
Swath Width	620 m*

* @ 1000 m distance

Andreas Baumgartner, 27.09.2023

HySpex VNIR-1600 Level-1 Calibration Chain

HySpex VNIR-1600 Level-1 Calibration Chain

6

Geometric Calibration Results

- > 10,000 individual collimator measurements (~16 h)
- Determination of Angular Response Function (ARF) of each pixel
- In contrast to existing methods no analytical function is fitted:
 - Cubic spline interpolation
 - Center angle: Median
 - Resolution: Width of area containing 75 % of total collected energy

Andreas Baumgartner, 27.09.2023

Spectral Calibration Results

- Derived from >31,000 individual monochromator measurements (~2 days)
- Determination of Spectral Response Function (SRF) of each pixel
- Lower spectral resolution at the right detector edge
- Distortion of SRFs at center channels caused by spectral long pass filter mounted on upper detector half
- Simulations show that assuming Gaussian responses can introduce significant uncertainties

8

Non-uniformity Correction

- We have a very good understanding of the spatial and spectral properties (3D instrument pixel response function)
- But individual pixel information
 - is lost after orthorectification
 - would be cumbersome to deal with in higher level products
 - -> Pixel properties are often assumed to be constant
- A method is needed to homogenize not only SRF and ARF centers but also their shape

Baumgartner, Andreas and Köhler, Claas Henning (2020) **Transformation of point spread functions on an individual pixel scale.** Optics Express, 28 (26), pp. 38682-38697. Optical Society of America. DOI : 10.1364/oe.409626

Imaging Equation

Image L_i^A = radiance field L_λ is weighted by spectral and angular response function of each pixel f_i^A

For simplicity only spectral case is shown

Goal: Converting Data from System A to System B

Problem: Find a matrix *K* that maps each pixel in column vector L^A to all pixels of column vector L^B (a row of *K* maps all pixels of L^A to a pixel of column vector L^B)

Remember: Each pixel has individual spectral and geometric properties

New Approach: Using Cross-Correlations to Find Transformation Matrix *K*

Converting vector L^A to L^B is same operation as converting matrix C^{AA} to C^{BA}

$$\boldsymbol{L}^{B} = \boldsymbol{K} \cdot \boldsymbol{L}^{A}$$
$$\boldsymbol{C}^{BA} = \boldsymbol{K} \boldsymbol{C}^{AA}$$

- C^{AA}: Cross-correlation matrix of sensor A pixels with sensor A pixels
- C^{BA}: Cross-correlation matrix of sensor B pixels with sensor A pixels

$$C_{ii'}^{AA} = \int_{0}^{2\pi} \int_{0}^{\infty} f_i^A(\beta,\lambda) f_{i'}^A(\beta,\lambda) \,\mathrm{d}\lambda \,\mathrm{d}\beta$$
$$C_{ji}^{BA} = \int_{0}^{2\pi} \int_{0}^{\infty} f_j^B(\beta,\lambda) f_i^A(\beta,\lambda) \,\mathrm{d}\lambda \,\mathrm{d}\beta$$

Determination of Transformation Matrix *K*

$$C^{BA} = KC^{AA}$$

Using Tikhonov regularization to stabilize ill-posed problem

$$\hat{oldsymbol{K}} = rgmin_{oldsymbol{K}} \left\{ ig\|oldsymbol{K}oldsymbol{C}^{AA} - oldsymbol{C}^{BA}ig\|_2^2 + \gamma^2ig\|oldsymbol{K}oldsymbol{\Gamma}ig\|_2^2
ight\}$$

Γ: Tikhonov matrix \rightarrow discrete Laplacian \rightarrow penalize high frequencies γ: Regularization parameter (here $\gamma^2 = 10^{-11}$)

Andreas Baumgartner, 27.09.2023

15

Simulation

- Ideal sensor with
 - Gaussian response functions
 - Constant sampling distance
 - Constant FWHM = 5 nm
- High resolution test scene
- Individual simulation of each pixel (ARF + SRF) using cubic splines

 $L_i = \int_0^{2\pi} \int_0^{\infty} f_i \ (\beta, \lambda) L_\lambda(\beta, \lambda) \, \mathrm{d}\lambda \, \mathrm{d}\beta$

Simulation Results

- ~1.4 Channels / FWHM
- Better agreement, since also the SRF shape is transformed

Uncertainties

- Linear operation -> geometric and spectral uncertainties propagate linearly
- Covariances can be propagated by

$$\Sigma^{\rm B} = K \Sigma^{\rm A} K^{\rm T}$$

New HySpex VNIR-3400N Instrument

- Compared to VNIR-1600
 - Similar optics
 - Detector with ~10 x pixels
- 700 spectral channels
- 3408 spatial pixels
- Spectral oversampling 3 7
- Spectral sharpening (super-resolution) at certain channels
- After transformation 1338 x 296 pixels
- Ongoing work

Conclusion and Outlook

- Correction of smile, keystone and pixel individual response function shapes in one processing step
- It is possible to get "perfect" data from not so perfect instruments
- Building instruments with more pixels can reduce requirements and therefore costs, while increasing performance
- Transformation algorithm can also be used to convert images between instruments:
 E.g., EnMAP to Sentinel-2, field-spectrometers, etc.
- Works also with snapshot instruments

Ongoing/future research

- Combining stray light correction matrix with transformation matrix
- Optimizing regularization method
- Uncertainty of under sampled data
- Adding along-track transformation

Simulation Results

HySpex VNIR-1600 Level-1 Calibration Chain

