SENSOR DEVELOPMENT & CAL/VAL ACTIVITIES @ DLR-OS

DLR Institute of Optical Sensor Systems on behalf of the Sensor Design and Development & Data Processing teams

Christian Fischer

CEOS WGCV IVOS 35

27 September 2023 Oberpfaffenhofen

Geometric calibration and static / dynamic MTF (UV, VIS, NIR, SWIR)

Static MTF measurement and geometric calibration in UV / VIS / NIR / TIR Dynamic MTF measurement for TDI sensors Adjustment / Measurement of cameras, spectrometer, star cameras Spectrometer spectral and spatial resolution measurement

- Clean room class ISO8
- Temperature stabilised (±1.0 °C)
- Gimbal-Mount (2 rotations, 3 translations, 100 kg)
- Mirror and Lens collimator F/#8, 1200mm
- Combined with monochromator und halogen radiation source
- Monochromator UV / VIS / NIR
 - Spectral range: $\lambda \in 0.25 2.5 \ \mu m$, spectral resolution $0.1 2 \ nm$
- Calibrated detectors
 - Si-Diode ($\lambda \in 0.4 1.05 \ \mu m$)
 - PbS-detector ($\lambda \in 0.75 3.0 \ \mu m$)
 - Spectral line lamps, LEDs, fiber coupled ...

Radiometric calibration (UV, VIS, NIR, SWIR, TIR)

- Clean room class ISO8 (ISO5 tent for open detectors), ESD protection
- NIST and PTB- traceable integrating spheres
- Absolute calibration (radiance, irradiance), linearity, PRNU, SNR, PTC for cameras,
- focal planes, single detectors, spectrometer ...
- LED combined sphere available
- Different calibrated black bodies für SWIR and TIR , Avantes spectrometer VIS and SWIR
- Microscopes for inspection, test benches, TV chamber
- LED measurement set-up

Successful projects and projects in preparation

- BIRD, FireBIRD (TET, BIROS): LWIR, MWIR, VIS cameras
- MERTIS IR spectrometer for Bepi Colombo
- KOMPSAT 3 focal planes
- KOMPSAT 7 focal planes
- DESIS VIS spectrometer on ISS
- EnMAP VNIR focal plane
- MACS Aerial camera systems
- RAX Raman spectrometer for MMX-Mission

On-going activities:

- PLATO Fine Guidance System
- VEM for VERITAS Mission
- COSIS for CO2Image

FM1 Full Functional Test in Korea

4

FireBIRD - Field Experiments

On-ground measurements:

• On-ground measurements:

Fire temperature for calculating FRP

- Palettes
- (@BAM: Federal Inst. for Materials Research and Testing)
 - Analyse flame characteristics.
 - Compare IR images with measured potential influencing variables, such as gas flow.
- Aerial surveys:
 - Validate on-ground results with imagery from aerial surveys (closer to satellite's perspective).
 - Analyse the effects of the flight height (i.e. rough "atm. correction").

FireBIRD - Forest Fires in Bolivia 2019

detected cluster: 357	
<u>size: ~</u> 223 km²	
<u>FRP: ~</u> 3 GW	

DESIS- Radiance Data Analysis

- ~ 600 scenes from 2018 2023
- Analysis of land cover types
- Consideration of sun sensor geometry & characterization of image phenomena
- Statistical analysis of outliers

DESIS - Vicarious Assessment of Geometric Quality

DT0305463612_002-L1A

Corpus Christi (Nueces Bay Causeway)

- The use of bridges or similar allows an estimation of the PSF from a gauss fit.
- To improve the accuracy one can use a similar method as slanted edge.
- This gives an improvement of the information on intermediate or sub-pixel positions.
- To determine the sensor PSF, one have to consider the width of the test structure used. In addition, smearing effects, caused by motion have be taken into account.
- This is taken into account here by the additive properties of sigma (PSF) of the individual components.

Vicarious Assessment – σ PSF

Sigma PSF L1A data: calculations for taking the edge of the bridge as a test object, in flight direction => grey stripes

<u>upper right</u>: calculation along-track: changes up to 60% (inverted modular transfer function MTF), due to smearing effects caused by motion.

<u>lower right</u>: cross-track: sigma is clearly smaller, but variability is clearly visible.

CO2Image: Innovation in comparison to other Missions

10

CO2Image: COSIS Instrument

Mass	110 kg
Swath	50 km
Spatial resolution	50 m x 50 m
Spectral range	1972-2400 nm
FWHM (2.5 pix)	1.3 nm
Resolving power	1600
Aperture diameter	15.0 cm
f number	2.0
Optical efficiency (η)	0.48
Integration time	70 ms
Detector pixel area	900 µm²
Quantum efficiency (Qe)	0.8 e ⁻ photon ⁻¹
Dark current	1.6 fA pix ⁻¹ s ⁻¹
Readout noise	100 e [_]
Quantization noise	40 e⁻

- Single-Pass TMA Spectrometer
- Design by DLR-OS, optics manufactured by Fraunhofer Institute for Applied Optics and Precision Engineering, Jena

420 mm

• Detector: AIM AGD, 1280 x 1024 pixel

760 mm

Krutz et al., 2022

German Aerospace Center (DLR) Institute of Optical Sensor Systems Rutherfordstr. 2 12489 Berlin

Dept. of Space Instruments Dr. David Krutz (head) David.Krutz@dlr.de

Dept. of High-Speed Electronics Ilse Sebastian <u>Ilse.Sebastian@dlr.de</u>

Dept. of Real-Time Data Processing Dr. Christian Fischer <u>c.fischer@dlr.de</u>

Übersicht CO2Image-Mission, August 2023