

– CEOS-WGCV-IVOS 35 –

Copernicus sentinel-2 & 3 optical constellation L1-product radiometry validation status: Operational and S2-Collection-1

B. Alhammoud balhammoud@argans.eu

26th September 2023

Video-conferencing

Dataset and Tools

Level-1 Radiometry vicarious validation/verification

- ✓ Sentinel-2/MSI
- ✓ Sentinel-3/OLCI
- ✓ Sentinel-3/SLSTR
- Cross-mission intercomparison

Conclusion

17 CalVal sites are used

- L1C MSI-A & MSI-B: OPT-MPC-DAGC & https://scihub.copernicus.eu/
- L1TP LANDSAT-8 & 9: https://earthexplorer.usgs.gov/
- L1B OLCI-A & OLCI-B, SLSTR-A & B: OPT-MPC & https://scihub.copernicus.eu/
- RadCATs: are provided by the NASA Landsat Cal/Val Team as part of the ESA expert users effort / UoA
- RadCalNet: https://www.radcalnet.org/

3

CalVal sites available in DIMITRI-toolbox

17 CalVal sites are used

Bright sites: Desert: 6 CEOS- PICS	Dark sites: Land: La Crau
 Gobabeb RRVP BSCN Ice/Snow DOME-C 	Water 6 Open Ocean Boussole (Costal)

Site type	Water	La Crau	Desert	Snow
Reflectance range	0-0.2	0.2-0.3	0.2-0.7	0.7-0.9

Vicarious Methods in DIMITRI-toolbox

Copernicus	DIN Database for Imaging Multi for Radiometri	esa	
Rayleigh scattering calibration	Sun-Glint inter-bands calibration	Desert (PICS) calibration	Sensor-to-Sensor intercalibration
Absolute calibration coefficient: as pobs/psim	$\frac{1}{10000000000000000000000000000000000$	Relative calibration coefficient: as ρ ^{obs} /ρ ^{sim} (MERIS as REF)	Absolute inter-calibration coefficient: as ρ ^{obs} /ρ ^{REF}
 Over VIS bands Uncertainty <5% Very stringent criteria 	 Over VNIR bands Uncertainty <2% Very stringent criteria 	 Over VNIR bands Uncertainty <5% Uses surface BRDF 	 VIS, NIR & SWIR Uncertainty <5% Limited matchups

© ACRI-ST | OPT-MPC – 2023

tical Mission Performance Clu

CEOS-WGCV-IVOS-35 | Video-conferencing | 26/09/2023

5

ACRI GREANS Sentinel-2/MSI Radiometry Vicarious Validation

Rayleigh & Desert-PICS Methods: 12 CalVal sites & time-series up to July 2023

In-Situ measurements: 4 CalVal RadCalNet sites & time-series up to June 2023.

OPT-MPC

Optical Mission Performance Clust

ACRI GREANS Synthesis of the Radiometry Vicarious Validation

Results synthesis: Before 2022 (Bias correction)

- Good consistency over all the methods
- Results are within 3% (mission target req.)
- Maximum discrepancy is observed over
 - Rayleigh B01
 - Matchups with LS-8 B01 & B02
 - Matchups with In Situ B01, B02 & B11
- Good temporal stability (No trend detectable)
- Slight bias of MSI-A vs MSI-B of ~1% (Corrected since 25th Jan-2022)

S2A

S2B

OPT-MPC

ACRI CARGANS Synthesis of the Radiometry Vicarious Validation

Results synthesis: After 2022 (Bias correction)

- Good consistency over all the methods
- Results are within 3% (mission target req.)
 - Except Rayleigh B01,
 - Except In-Situ (RadCalNet) SWIR1/2
- Good temporal stability (No trend detectable)
- Good consistency with similar missions
 - <2% over Libya4,
- Successful MSI-B bias corrected since 25th Jan-2022

OPT-MPC

Why: To achieve a consistent archive

<u>When:</u> The reprocessing of the S2 archive started in Q2 2022 & will last until Q4 2023 For more details:

- ✓ Sentinel online: <u>https://sentinels.copernicus.eu/web</u> (Monthly/Annual DQRs)
- <u>https://sentinels.copernicus.eu/web/sentinel/sentinel-data-access/sentinel-</u> products/sentinel-2-data-products/collection-1-level-1c
- https://sentinel.esa.int/documents/247904/3519647/OMPC.ACR.APR.002+-+i1r1+-

+S3+Optical+Annual+Performance+Report+2022.pdf

✓ IEEE-IGARSS (2023), 5th S2VT (2022), 6th S2VT (2023), and ESA-LPS (2023)

Mission Performance Cluster Main evolutions on Level-1C:

- ✓ the systematic use of the refining based on the Global Reference Image (GRI)
- ✓ radiometric bias correction of 1.1 % applied to Sentinel-2B VNIR bands B01 to B09

ACRI ARGANS Sentinel-2/MSI Radiometry Vicarious Validation:

- ✓ Level-1C quality masks in raster format
- \checkmark addition of a radiometric offset to Level-1C and 2A products to avoid truncation of

negative reflectances due to noise on low signal,

- ✓ new ECMWF* and CAMS** auxiliary parameters embedded in L1C and 2A products,
- \checkmark addition of the DOI (Digital Object Identifier) in the Level-1C and Level 2A (CEOS

Analysis Ready Data for Land (CARD4L) compliant) metadata,

OPT-MPC

Collection-1

ACRI GREANS Sentinel-2/MSI Radiometry Vicarious Validation: Collection-1

Optical Mission Performance Cluster

Desert-PICS : 6 CalVal sites

OPT-MPC

Collection-1: 2017-2021 MSI-A: 432 & MSI-B: 422 Acqs

ACRI GREANS Sentinel-2/MSI Radiometry Vicarious Validation: Collection-1

Wavelength (nm)	MSI-A OPER	MSI-A COLL-1	Diff
443	0.992	0.997	0.005
490	0.993	0.995	0.002
560	1.003	1.007	0.004
665	0.998	0.998	0.000
705	NA	NA	NA
740	1.010	1.011	0.001
784	1.006	1.007	0.001
842	0.992	0.993	0.001
865	1.000	1.000	0.000

MSI-A radiometry shows the same values as the operational one (**Diff < 0.005**)

Wavelength (nm)	MSI-B OPER	MSI-B COLL-1	Diff 🧖
443	0.981	0.992	0.011
490	0.987	0.998	0.011
560	1.002	1.013	0.011
665	0.990	1.001	0.011
705	NA	NA	NA
740	1.006	1.018	0.012
784	0.989	1.001	0.012
842	0.982	0.994	0.012
865	0.990	1.002	0.012

MSI-B radiometry shows higher values than the operational ones (**Diff = 0.011**)

"Bias correction successfully performed".

OPT-MPC

Rayleigh, Desert-PICS & Glint Methods: 12 CalVal sites & time-series up to July 2023

ACRI ARGANS Sentinel-3/OLCI Radiometry Vicarious Validation

A REAL

13

OPT-MPC

atical Mission Performance Cluste

ACRI ARGANS Synthesis of OLCI Radiometry Vicarious Validation

OPT-MPC

Results synthesis over Sentinel-3/OLCI

- Good consistency over all the methods
 - Except Rayleigh (short wavelength)
- OLCI-A Results are within 5% (2% mission reg.)
 - Except Oa02, Oa04 & Oa21
- OLCI-B Results are within 2% (2% mission reg.)
 - Except Oa02, Oa04 & Oa21
- Good temporal stability (No trend detectable)
- **OLCI-A shows slightly (1-2%) brighter TOA-reflecta** wrt OLCI-B

Rayleigh, Glint & Desert-PICS Methods 12 CalVal sites & time-series up to June 2023

ical Mission Performance Clust

Synthesis of SLSTR Radiometry Vicarious Validation

Results synthesis over Sentinel-3/SLSTR (N)

- Good consistency over all the methods
 - VNIR bands S01-S03
- SLSTR-A/B Results are within is within 5% (NADIR) up to 7-8% (OBLIQUE)
 - VNIR bands S01-S03
 - SWIR bands S05-S06
- Good temporal stability (slight positive trend detectable)
- SLSTR-A & B show good agreement better than 1%

16

Radiometry cross-mission Intercomparison:

desert PICS-Method over Libya-4

17

Radiometry cross-mission Intercomparison: desert PICS-Method over Libya-4

Radiometry cross-mission Intercomparison: desert PICS-Method over Libya-4

Radiometry cross-mission Intercomparison: desert PICS-Method over 6 Sites

Ratio of observed TOA reflectance to simulated one for (black) MERIS, (pale-green) S2A/MSI, (white) S2B/MSI, (blue) S3A/OLCI, (green) S3B/OLCI, (red) S3A/SLSTR-NADIR, and (cyan) S3B/SLSTR-NADIR averaged over the six PICS test sites over different periods as a function of wavelength

- Good consistency over the results of the different methods: Rayleigh scattering, Glitter, and desert-PICS (over VNIR bands);
 - Except Rayleigh over blue-green bands
- MSI-A/B and OLCI-A/B show very good stability over the mission life-time, while SLSTR-A/B show slight positive trend
- MSI-A/B and SLSTR-A/B show excellent alignment, while OLCI-A shows brighter TOA-reflectance than OLCI-B over VNIR bands by 1-2%;
- Successful collection1 reprocessing of MSI-A/B
- Good agreement with similar missions (<2%) over Libya-4 PICS.

OPT-CM Copercial Mission Perform	MPC	A	CRI	ARGANS	S	Invitation to Special-Issue	o submit Ma e of Remote s	nuscr sensir	ipt for ang MDPI
	N	IDPI	Special Issues /	Copernicus Sentinels Missi	FOR P	Deletes in		IMPACT	CITESCOPE
	^k E	remote s	ensing	Spec	ial Issue "Coperr	nicus Sentinels I	Vissions	5.349	7.4
	Sub	Submit to Special	ssue	Calib Appr	ration, Validation	n, FRM and Innovite-Data Quality A	vation Assessment"		
	R	eview for Remote	Sensing						

Expected topic areas covered by Copernicus Sentinels missions but are not limited to:

- remote sensing of atmospheric composition, land, ocean, snow and ice surface, •
- calibration and sensors' intercomparison, ٠
- validation of geophysical data products, ٠
- innovations to products' retrieval algorithms and Cal/Val techniques, •
- Fiducial Reference Measurements (FRM) for satellite data validation. •

https://www.mdpi.com/journal/remotesensing/special_issues/J3CYH3OQV0#editors

Guest-Editors: Dr. B. Alhammoud, Dr. S. Clerc, Dr. S. Dransfeld, Dr. J-C. Lambert, Mr. P. Féménias

Deadline for manuscript submissions: 30 November 2023

Acknowledgement

Thank you for your attention!

Thanks to:

- OPT-MPC team and DIMITRI team for their support

- RADCATS dataset were provided by the NASA Landsat Cal/Val

Team as part of the ESA expert users effort

- RadCalNet team for providing the dataset

Funded by the EU and ESA

European Union

The views expressed herein can in no way be taken to reflect the official opinion of the European Space Agency or the European Union.