

- Uncertainty Budget Development
 - Examples Status of Copernicus Missions, Landsat

Standards for Storage & Distribution

Uncertainty Budget Development

QA4E Steps to an FDR / TDP or FRM Uncertainty budget

Guidance documentation and training materials available at www.qa4eo.org

NPL

Error-Correlation in EO Datasets

Example of a Sea Surface Temperature Radiometer

Sea surface temperature – TIR Radiometer – Example

NPLO

Which dimensions matter? (Radiometric examples)

Artefact to artefact Run to run Site to site Etc...

Establish traceability with a diagram

Copernicus Missions

Uncertainty Analysis for Copernicus Sensors NPL

- Uncertainty information now available for all Copernicus optical imaging sensors at L1
 - Sentinel-2/MSI on-the-fly tool (S2-RUT)
 - Sentinel-3/SLSTR on-the-fly tool
 - Sentinel-3/OLCI now embedded in the product

Sentinel-2 Radiometric Uncertainty Tool

- S2-RUT plugin developed for SNAP to allow users to evaluate uncertainties for the products they are analysing on the fly
- Based on uncertainty model developed following GUM model
- On-going development to extend to L2A products

NPLO

SLSTR Uncertainty Analysis

- Uncertainty budget developed in MetEOC
- Delivered by an onthe-fly tool MapNoiS3
- Validation activity via tandem phase analysis

Standards for Storage & Distribution

Interactive mission documentation

- Interactive uncertainty tree diagram to store information about algorithms and as "educational resource" for mission
- Quantitative information about uncertainties included in metadata for products
- Documentation on data traceability and any harmonisation applied (e.g. Sentinel 2A/B harmonisation discussed yesterday). (Raw data also available?)
- CEOS to agree standardised approach so users can understand different missions and analyses

Standardised Error-Covariance Metadata: Digital Effects Tables (with NPL CoMet software)

		Comments
Name of effect		A unique name
Affected term in measurement function		Name and standard symbol
Instruments in the series affected		List names
Correlation type and form	Pixel-to-pixel [pixels]	From a set of defined correlation forms
	from scanline to scanline [scanlines]	
	between images [images]	
	Between orbits [orbit]	
	Over time [time]	-
Correlation scale	Pixel-to-pixel [pixels]	As needed to define type
	from scanline to scanline [scanlines]	
	between images [images]	
	Between orbits [orbit]	
	Over time [time]	
Channels/band s	List of channels / bands affected	Channel names
	Error correlation coefficient matrix	A matrix
Uncertainty	PDF shape	Functional form
	units	Units
	magnitude	
Sensitivity coefficient		Value, equation or parameterisation of sensitivity of measurand to term

double u_str_temperature(x=2, y=2, time=3); :_FillValue = 9.969209968386869E36; // double :err_corr_1_dim = "x"; :err_corr_1_form = "custom"; :err_corr_1_params = "err_corr_str_temperature_x"; :err_corr_2_dim = "y"; :err_corr_2_form = "systematic"; :err_corr_2_mits = ; // double :err_corr_2_params = ; // double :err_corr_3_dim = "time"; :err_corr_3_form = "systematic"; :err_corr_3_nits = ; // double :err_corr_3_params = ; // double

Print out of uncertainty variable attributes for netCDF file

Digital Effects Table

Tools for uncertainty propagation

- NPL's CoMet toolkit can be used to simplify uncertainty propagation
 - Open-source python toolkit aligned to QA4EO approach
 - Enable easy handling and processing of dataset error-covariance
 - Implements Law of Propagation of Uncertainties & Monte Carlo methods
 - Allow the user to rely on quality-assured code, rather than having to reinvent the wheel, and lower the barrier to entry for users new to handling uncertainties.

<u>www.comet-toolkit.org</u> <u>github.com/comet-toolkit</u>

The CoMet toolkit in practice

These digital effects tables (DET) can be used to propagate uncertainties while automatically taking into account the error correlation information

```
from punpy import MeasurementFunction
# Define your measurement function inside a subclass of MeasurementFunction
class IdealGasLaw(MeasurementFunction):
    def meas_function(self, pres, temp, n):
        return (n *temp * 8.134)/pres
# create object of the measurement function class and specify the variable names
gl = IdealGasLaw(["pressure", "temperature", "n_moles"], "volume", yunit="m^3")
# propagate uncertainties on the input quantities in ds to measurand in ds_y
ds_y = gl.propagate_ds(ds)
```

ds_y will contain DET with propagated random, systematic and structured uncertainties, taking into account error_correlation in ds (input DET)

Discussion Topics

Discussion Topics

- Building an uncertainty budget
 - Design
 - Pre-Launch Characterization
 - Transfer to Orbit
 - Monitoring
 - · How can expand the uptake of uncertainty best practices
 - At space agencies?
 - At commercial companies?
 - What are the minimum viable implementations?
 - Already on-orbit sensors

Discussion Topics

- Coordination Between Active Groups
- Standardization/Best Practices
- Generalizations/Simplifications
- Constellation Normalization
- Tools/Processing/Data Storage
- References/Traceability/Uncertainty "Transfer"
- Metadata
- How can we progress with these topics?