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L1T Algorithm Overview

 Algorithm developed to estimate uncertainty for L1 Landsat 8 data

 Starts with inherent uncertainty produced for L1R OLI and TIRS data

• Unevenly spaced grid

 L1R data is resampled (interpolated) to a regular grid to create L1T product

• Four components of uncertainty of the resampled L1T product are estimated

– Propagation of the radiometric noise (L1R) through the interpolation

– SI traceability (L1R) uncertainty

– Intrinsic interpolation uncertainty

– Coupled geometric and radiometric uncertainty

• The effect of saturated pixels is also considered

 GUI implementation of uncertainty algorithm has been developed and tested
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Relationship to Previous Work

 Gorrono et. al developed the S-2 Radiometric Uncertainty Tool (RUT)

 Emphasized SI traceability based on first principles

 Produced per-pixel radiometric uncertainty but did not include resampling

 Developed a similar uncertainty propagation framework for L8 with 

additional extensions

 SI traceability provided by Ball Aerospace

 Greater emphasis on interpolation related errors

• Intrinsic interpolation error 

• Sensor noise propagation 

• Coupling of geometric and radiometric uncertainties

1Gorroño, Javier, Ferran Gascon, and Nigel P. Fox. 2015. “Radiometric Uncertainty per Pixel for the 

Sentinel-2 L1C Products.” In Proceedings of SPIE, edited by Roland Meynart, Steven P. Neeck, Haruhisa 

Shimoda, Toshiyoshi Kimura, 96391G. Toulouse, France. https://doi.org/10.1117/12.2192974.

about:blank
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Summary of Modifications

 Improved intrinsic interpolation uncertainty propagation methodology

 Original estimate based on a look-up-table approach using a few features

 Improved algorithm uses analytical approach to directly estimate uncertainty from interpolation 

equations

 Level 2A uncertainty product initiated

 Extending the Landsat 8 L1 per-pixel uncertainty estimation through L2 processing

• Sensitivity analysis methods are used to estimate uncertainty for uncorrelated terms

• Transmission and Rayleigh scattering uncertainty over a range of expected AOT, 

pressure, angle, water vapor and ozone values will be estimated
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Uncertainty Propagation

 The uncertainty in a quantity y formed by combining N measured quantities xi through 
the relationship y = f (x1,x2, … xN ) is given by:

𝑢2 𝑦 = 

𝑖

𝑁
𝜕𝑓

𝜕𝑥𝑖

2

𝑢2 𝑥𝑖 +

𝑖

𝑁



𝑗≠𝑖=1

𝜕𝑓

𝜕𝑥𝑖

𝜕𝑓

𝜕𝑥𝑗
𝑢 𝑥𝑖 , 𝑥𝑗

 Where: 𝑢 𝑥𝑖 is the uncertainty in 𝑥𝑖 and 𝑢 𝑥𝑖 , 𝑥𝑗 is the covariance between 𝑥𝑖 and 𝑥𝑗. If the combined 𝑥𝑖 and 𝑥𝑗
are independent (i.e., uncorrelated), the term reduces to zero and the above expression reduces to the “sum of 
squares” commonly applied. 

ISO Guide to the Expression of Uncertainty of Measurement
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L1T Uncertainty Components

Inherent per pixel L1R 

Radiometric Uncertainty

(SI Traceability + Noise)

L1T Resampling 

Algorithm 

Transfers SI 

Uncertainty

Introduces Intrinsic 

Interpolation Uncertainty 

Geometric Uncertainty from L1T

Resampled per pixel Radiometric Uncertainty

Coupled Geometric and Radiometric Uncertainty 

Algorithm

L1R

SCA/Band

Propagates

Noise Uncertainty

L1T Resampled Radiometric 

Uncertainty
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L1T Pixel Uncertainty Estimation 

Review 
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Inherent L1R Per Pixel Radiometric Uncertainty

 OLI L1R radiometric uncertainty combines SI traceable gain uncertainty 

and radiometric noise model

 Ball Aerospace provided pre-launch SI traceable uncertainty values for OLI

• Uncertainties depend on image radiance (bi-modal)

 Per-detector radiometric noise model coefficients were developed

• Validated against published noise model coefficients

 OLI inherent radiometric uncertainty can be estimated for L1R radiance or 

reflectance output

 TIRS radiometric uncertainty used the same framework as OLI

• Noise estimated for every pixel
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L1R TOA Radiance Uncertainty (Inherent) 
SI Uncertainty + Noise Uncertainty

Lake Pontchartrain P22/R39

Red (Band 4) TOA Radiance, Absolute and

Relative Uncertainty

Band 4 𝐿𝑡𝑦𝑝𝑖𝑐𝑎𝑙=22 Wm-2sr-1µm-1

SI Radiance Uncertainty (High)=2.9%

SI Radiance Uncertainty (Low)=3.3%

SI uncertainty dominates throughout the scene
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L1R TOA Radiance Uncertainty (Inherent)
SI  Uncertainty + Noise Uncertainty

Lake Pontchartrain P22/R39

SWIR2 (Band 7) TOA Radiance Absolute and

Relative Uncertainty

Band 7 Ltypical radiance = 1.7 Wm-2sr-1µm-1

SI Radiance Uncertainty (High)=3.2%

SI Radiance Uncertainty (Low)=3.6%

Low signal in SWIR shows increased relative uncertainty due to noise
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Example TOA Color (RBG) Reflectance Images

Lake Tahoe P43/R33

October 21, 2020

Lake Pontchartrain P22/R39

December 21, 2020
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Resampled Radiometric Noise

 Radiometric noise from the Level 1R data propagates through the 

interpolation to provide the resampled radiometric noise

 Uses the partial derivatives of the interpolator 
Reflectance Example

The relative resampled 

radiometric noise in the 

Lake Tahoe Scene (red 

band) overall is low, but 

highest in the lake where 

the pixels are darkest. 

Note: Uncertainty figures shown on 

same scale to highlight differences 

in magnitude

Relative

L1T TOA Reflectance
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SI Uncertainty

 SI uncertainty is treated separately from the radiometric noise

 The SI traceability is not effected by the interpolator

Reflectance Example

The relative resampled SI 

uncertainty in the Lake 

Tahoe Scene (red band) is 

largely bi-modal with some 

interpolation. 

Note: Uncertainty figures shown on 

same scale to highlight differences 

in magnitude

Relative

L1T TOA Reflectance



U.S. Geological Survey Landsat 8 OLI & TIRS L1T Radiometric Pixel Uncertainty Estimation Update

14

Coupled Geometric and Radiometric Uncertainty

 Coupled uncertainty of an edge, in one dimension

 Two curves represent an edge on the ground imaged on 

different days  

▪ Dy is the radiometric uncertainty due to geometric uncertainty 

(Dx)

 Gradient of the edge = 
𝜕𝑦

𝜕𝑥

 By generalizing, 𝜕𝑦 =
𝜕𝑦

𝜕𝑥
𝜕𝑥,

we can estimate coupled geometric and radiometric 

uncertainty as,

∆𝑦 ≈
𝜕𝑦

𝜕𝑥
∆𝑥
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Coupled Geometric and Radiometric Uncertainty

 Uncertainty in position will affect the result of resampling

 How large this effect is depends on the slope of the data at the point of the position error and 

the amount of uncertainty in position

 Estimated as the product of the derivative of the image and the positional error

𝑢𝑐𝑔𝑟,𝑥 =
𝑑𝐼𝑚𝑎𝑔𝑒

𝑑𝑥
Δ𝑥

𝑢𝑐𝑔𝑟,𝑦 =
𝑑𝐼𝑚𝑎𝑔𝑒

𝑑𝑦
Δ𝑦

𝑢𝑐𝑔𝑟 = 𝑢𝑐𝑔𝑟,𝑥
2 + 𝑢𝑐𝑔𝑟,𝑦

2

Note: Uncertainty figures generated with 

same scale to highlight differences in 

magnitude

Areas with higher gradients have 

higher coupled geometric 

radiometric uncertainty. Easier to 

see in the relative uncertainty 

image.
L1T TOA Reflectance
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Saturated Pixels

 Saturated pixels have unknown uncertainty

 The lack of information will propagate through the resampling

• Output locations that have a saturated input pixel in their resampling kernel will also have 

unknown uncertainty

 Pixels affected by saturation assigned an “unknown” uncertainty

L1T TOA Reflectance

(Left) The red pixels are the 

result of a single saturated pixel 

in the original L1R data. 

(Right) The dark blue area 

shows the pixels affected by the 

saturation during interpolation. 

These have an unknown 

uncertainty and are masked out 

(-9999).

Note: Uncertainty figures shown on 

same scale to highlight differences 

in magnitude

(Red Band)
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Improved Intrinsic Interpolation 

Uncertainty Propagation Methodology
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Intrinsic Interpolation Uncertainty

 Interpolation is used to estimate data values between 

observation points

 The estimate depends on the shape of the underlying function being used in 

the interpolation

• There are many different choices for the interpolation functions (linear, cubic, nearest 

neighbor, spline, etc.)

• There is some inherent error in the interpolation because the true source data has no 

connection to the function selected
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Intrinsic Interpolation Uncertainty

 Landsat 8 uses two different interpolation methods to make these 

estimations

 In-track uses cubic convolution interpolation

 Cross-track uses Akima interpolation

 Lagrange cubic polynomial interpolation has a known error estimate

 This interpolator is a cubic polynomial interpolator

 The error estimate requires determining the 4th derivative of the source

 Can be extended to other cubic polynomial interpolators

Both of these are cubic polynomial interpolators
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Example Source vs. Interpolator
Cubic Convolution

• The four red x’s simulate evenly 

spaced observations of the L1R 

sampling in the in-track direction

• The blue curve is the continuous 

sample

• The black curve is the cubic 

Lagrange polynomial through the 4 

observation points

• It is well known, and has 

known error estimate

• The magenta curve is the cubic 

convolution interpolation

• Interpolation would only apply 

to the region of interest, 

between the vertical dotted 

black lines

Inside the ROI (between 0 and 1):
• Both cubic polynomials overestimate 

the source function

• Neither polynomial is better than the 

other over the whole region

• Lagrange polynomial has known error, 

and cubic convolution interpolation 

error, while unknown, can be bounded
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Example Normalized Target – Stressing Case

• The black line is a 

normalized edge

• The blue line is a 1 m 

oversampling of the edge 

as it would be seen by 

Landsat 8

• The four red x’s are the 

observations of the edge 

at Landsat 8’s 30 m 

resolution

• The red line is the cubic 

convolution of the four 

observations over the 

region of interest

Residuals inside the ROI:
• Interpolator is off by ~0.06 

from the actual value of the 

edge (residual value).

• The normalized edge 

response is close to 0.1, so 

this residual value is a 

significant error
~0.06

~0.10
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Cubic Convolution vs. Lagrange Polynomial
Example Normalized Edge

For the normalized edge case:
• Inside the region of interest, the 

cubic convolution is difficult to 

distinguish from the cubic 

Lagrange polynomial

• The cubic Lagrange polynomial 

line has a known error estimate 

in terms of the 4th derivative of 

the observation data. 

• Simulated, oversampled 

edge

• Dotted black line is the 

cubic Lagrange 

polynomial
• Passes through the 4 

observation points

• Dashed red line is the 

cubic convolution 

interpolator
• Extended beyond the 

region of interest
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Intrinsic Interpolation Uncertainty Theoretical Background

 The error estimate for Lagrange polynomial interpolation is known

 Based on the 4th derivative of the source (which is generally not known)

 This error estimate can be extended to Akima and cubic convolution interpolators

 The interpolators used by Landsat 8 are often close to the Lagrange polynomial
• Cubic convolution polynomial equals the Lagrange polynomial at the center of the region of interest

 The absolute difference between the Lagrange polynomial and the interpolated value is the same as 
the absolute difference in their errors as compared to the source

 The 4th derivative of the source can be estimated from the point spread function (PSF) 
and the observed values

 The combination of these three points gives an upper bound on the reasonable residual 
error that might be seen for a set for observations

 Conservative estimate

 We assume the distribution of possible sources that give a particular observation is normal (gaussian)

 This maximum error bound is divided by 5 to estimate the 1-sigma uncertainty
• More effort is needed to determine the relationship between the maximum and the 1-sigma bound



U.S. Geological Survey Landsat 8 OLI & TIRS L1T Radiometric Pixel Uncertainty Estimation Update

24

Intrinsic Interpolation Uncertainty Estimate 
Simulated Edge

• Estimate of the intrinsic 

interpolation uncertainty 

(red curve). 
• Equation is given 

below, and explained in 

more detail in the 

Appendix.

• Actual residual error 

(blue curve) between 

the simulated edge 

example and the 

interpolated value at 

that point in the region 

of interest (ROI).

𝑢𝑐𝑐 𝑥 ≈
1

5

max
z

𝑓 4 𝑧

4!
ෑ

𝑖=1

4

𝑥 − 𝑥𝑖 + 𝑝𝐿 𝑥 − 𝑝𝑐𝑐 𝑥

The error estimate is a 4th degree polynomial. 

A bound for 𝑓 4 is established.

The bound on the derivative gives an upper bound on the 

maximum error that can be expected. For now, this maximum is 

divided by 5 to estimate the 1-sigma error, with the assumption 

that 5 standard deviations is near the reasonable limit for normal 

distributions.

Notes:
• Uncertainty is not a measure of 

the residuals

• It is an estimate of what the 1-

sigma error would be for all 

possible sources that could 

result in these 4 observation 

points.

• This is a stressing case. The 

uncertainty is close to 0.07, 

which is a significant error. 
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Intrinsic Interpolation Uncertainty - Reflectance

Lake Tahoe P43/R33  
Blue (Band 2)

The water, where the data is very homogeneous, has very small intrinsic interpolation uncertainty. High 

contrast areas have more uncertainty. The fingerprint-like pattern in the uncertainty (accentuated by Matlab) is 

due to the offset between output and observation positions.
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Intrinsic Interpolation Uncertainty - Reflectance

26

Lake Tahoe P43/R33  
Red (Band 4)

In the red band, there is a sharper contrast at the border of the lake, and this results is a higher 

intrinsic uncertainty.
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Intrinsic Interpolation Uncertainty - Reflectance

Lake Pontchartrain P22/R39  
Blue (Band 2)

The water here again has low intrinsic uncertainty. The developed areas surrounding the lake 

have higher contrast and higher intrinsic interpolation uncertainty. The area on the southern 

border of the lake is New Orleans.
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Intrinsic Interpolation Uncertainty - Reflectance

Lake Pontchartrain P22/R39  
NIR (Band 5)

In the NIR band, the contrast can be seen in the uncertainty estimates. Notice the Lake 

Pontchartrain bridge crossing the center of the lake stands out in the uncertainty estimates.
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Combining the Uncertainty Components

 The combined uncertainty is the root sum of the squares of each 
component of the uncertainty

 For pixels affected by saturation, this composite uncertainty is set to the 
unknown value

𝜎𝑡𝑜𝑡𝑎𝑙 = 𝜎𝑆𝐼 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦
2 + 𝜎𝑛𝑜𝑖𝑠𝑒

2 + 𝜎𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐
2 + 𝜎𝑐𝑜𝑢𝑝𝑙𝑒𝑑

2

where, 𝜎SI uncertainty = SI uncertainty 

𝜎noise = Resampled sensor noise

𝜎intrinstic =  Intrinsic interpolation uncertainty 

𝜎coupled =  Coupled geometric and radiometric uncertainty
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Uncertainty Components

Lake Tahoe

P43/R33

Red Band

Relative
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Uncertainty Component Histograms

Lake Tahoe 

P43/R33

Red Band

The double peak in the total uncertainty is a 

result of the SI uncertainty
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Initial L2 Uncertainty Development
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L2 Surface Reflectance Calculation

 As implemented in LaSRC, several terms in the above equation are combined

 Tratm and TgWV are combined into a single term (Ttatmg)

 r’atm = (ratm - Xrorayp) TgWVhalf + Xrorayp

 Uncertainty for many terms can be determined using input data uncertainty

 rtoa, TgOG, TgO3, TgWV, TgWVhalf, Xrorayp are all interpolated using input ozone, water vapor and/or 

elevation values

 Remaining terms do not have a straightforward uncertainty estimation

𝜌𝑠 =
𝜌𝑇𝑂𝐴 − 𝑇𝑔𝑂𝐺𝑇𝑔𝑂3𝜌′𝑎𝑡𝑚

𝑇𝑔𝑂𝐺𝑇𝑔𝑂3𝑇𝑟𝑎𝑡𝑚 𝑇𝑔𝑊𝑉 + 𝑆𝑎𝑡𝑚(𝜌𝑇𝑂𝐴 − 𝑇𝑔𝑂𝐺𝑇𝑔𝑂3𝜌′𝑎𝑡𝑚)

Inverted from Equation 1a in:

Vermote, Eric, Chris Justice, Martin Claverie, and Belen Franch. "Preliminary analysis of the performance of the Landsat 

8/OLI land surface reflectance product." Remote Sensing of Environment 185 (2016): 46-56.
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L2 Algorithm Status

 L2 Pixel Uncertainty algorithm still being defined

 Sensitivity analysis has been performed for several parameters

• Used values directly calculated from input data to investigate the effect of water vapor and 

ozone transmission

 Uncertainties will be estimated for individual terms in the surface reflectance 

equation

• Using the LaSRC source code to identify inputs for each term

 Estimating transmission uncertainty over a range of expected AOT, pressure, 

angle, water vapor and ozone values

• Extending analysis to Rayleigh scattering (using cmg dem)

 Identifying methods to define uncertainty for correlated terms
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L1T GUI Implementation



U.S. Geological Survey Landsat 8 OLI & TIRS L1T Radiometric Pixel Uncertainty Estimation Update

36

GUI Overview

 A graphical user interface (GUI) has been developed in MATLAB 

to allow the user to generate Landsat 8 L1T total or component 

uncertainty

 Each component can be computed individually

 The user can also combine only the components of interest, or compute the 

composite of all of them

 A compiled C-mex routine was created to compute the uncertainty 

components for which MATLAB itself would not be practical
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Initial Landsat-8 L1 Pixel Uncertainty Tool
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Initial Landsat-8 L1 Pixel Uncertainty Tool
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Appendix
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Intrinsic Interpolation Uncertainty Theoretical Background

 Lagrange polynomial interpolation provides a cubic polynomial fitting 4 points

 Has a known error bound based on the 4th derivative of the source, observation data

 Matches the observations at 4 points

 Akima and cubic convolution interpolators both use different cubic polynomials

 These are different than the cubic Lagrange interpolation polynomial

 Match the data at 2 points and have derivatives based on the slopes between observation points

 Often, these two interpolators are close to the Lagrange polynomial

• Cubic convolution polynomial actual equals the Lagrange polynomial at the center of the region of interest

 The Lagrange polynomial error can be extended to the other cubic interpolators

 The absolute difference between the Lagrange polynomial and the interpolated value is the same as the difference in 

their errors
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Intrinsic Interpolation Uncertainty Theoretical Background

 The uncertainty introduced by Lagrange polynomial interpolation is a function of the 4th

derivative of the source

 The (oversampled) source is the convolution of the actual scene and the point spread function (PSF) of 

the sensor

 Using convolution theory, the 4th derivative of the source data is the convolution of actual scene and the 

4th derivative of the PSF

• The actual scene can be estimated using the measured values (along with their uncertainties)

• The PSF of the sensor can be found empirically using edge target measurements, or by assuming it is gaussian 

with measured FWHM

• An upper bound is found for this convolution

 The same method provides uncertainty estimates for both Landsat 8 interpolators

 Estimates using this technique are dependent on the distance from the edge of the interpolation region, 

and peak in the center of the region of interpolation
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Mathematical Basis of Estimation
Error Estimate in terms of the 4th derivative of the source

 Lagrange polynomial uncertainty estimate, for observations at points 𝑥𝑖 and interpolation 

position 𝑥, where 𝑥1 < 𝑥2 < 𝑥 < 𝑥3 < 𝑥4 and 𝑝𝐿 is the Lagrange polynomial

𝑅𝐿 𝑥 = 𝑓 𝑥 − 𝑝𝐿 𝑥 =
𝑓 4 𝑧𝑥

4!
ෑ

𝑖=1

4

𝑥 − 𝑥𝑖 for some 𝑧𝑥 ∈ 𝑥1, 𝑥4

 The error of the interpolation is bounded by this error plus the difference between the 

Lagrange polynomial and the interpolator, 𝑝𝑖𝑛𝑡

𝑅𝑖𝑛𝑡 𝑥 ≤ 𝑅𝐿 𝑥 + 𝑝𝐿 𝑥 − 𝑝𝑖𝑛𝑡 𝑥

 The observation positions and the polynomials here are known

 For cubic convolution interpolation, the values of 𝑥𝑖 are −1,0,1,2

 For Akima the values of 𝑥𝑖 are the 4 center positions in the interpolation kernel

 Need an upper bound on 𝑓 4 𝑧𝑥
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Mathematical Basis of Estimation
Bounding the 4th Derivative

 If 𝑆 is the actual scene, and the sensor’s point spread function is 𝐺, then the observations 
are the convolution of these

𝑓 𝑥 = 𝑆 ∗ 𝐺 𝑥

 The derivatives of 𝑓 are can be written in terms of the source and derivative of 𝐺
𝑓′ 𝑥 = 𝑆 ∗ 𝐺′ 𝑥

𝑓 4 𝑥 = 𝑆 ∗ 𝐺 4 𝑥

 Note that the source 𝑆 is the sum of the observation (from the sensor) and an error term, 
and we already have an estimate of the distribution of this error

𝑆 = 𝑓 𝑥 + 𝜖(𝑥) which can be rearranged to 𝑓 𝑥 = 𝑆 − 𝜖(𝑥)

 The convolution of the source and the 4th derivative of the PSF can be bounded

𝑓(4) 𝑥 ≈ 𝑆 ∗ 𝐺 4 𝑥 ≈ 𝑓 ∗ 𝐺 4 𝑥 ≤ max 𝑦𝑖 න
𝐺 4 𝑥 >0

𝐺 4 𝑥 𝑑𝑥 − min 𝑦𝑖 න
𝐺 4 𝑥 ≤0

|𝐺 4 𝑥 | 𝑑𝑥

 This gives a bound on the 4th derivative
 The integrals above are the same for all observations, and need only be calculated once
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Cubic Convolution
Partial Derivatives

 For the cubic convolution, the partial derivative with respect to x can be computed 

algebraically as follows

𝑥𝑖 = 𝑥 − 𝑛 − 2 for 𝑛 = 1,2,3,4 and 𝑥 ∈ 0,1

𝑤𝑔𝑡 𝑥𝑖 = ቐ
3𝑎 𝑥𝑖

2 − 10𝑎 𝑥𝑖 + 8𝑎

3 𝑎 + 2 𝑥𝑖
2 − 2 𝑎 + 3 𝑥𝑖
0

if 𝑥𝑖 < 1
1 ≤ 𝑥𝑖 ≤ 2
otherwise

𝐶𝑢𝑏𝑖𝑐𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑥, 𝑦1, 𝑦2, 𝑦3, 𝑦4 =

𝑖

4

𝑤𝑔𝑡 𝑥𝑖 𝑦𝑖

𝜕

𝜕𝑦𝑖
𝐶𝑢𝑏𝑖𝑐𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑥, 𝑦1, 𝑦2, 𝑦3, 𝑦4 = 𝑤𝑔𝑡(𝑥𝑖)

𝑢𝑐𝑐
2 =

𝑖=1

4

𝑤𝑔𝑡 𝑥𝑖 𝑢 𝑦𝑖
2
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Modified Akima Interpolation

 The modified Akima interpolator takes 6 input points(𝑥𝑖 , 𝑦𝑖) and the relative distance (𝑧) of the 

interpolation point between the 3rd and 4th points, 

𝑑𝑥𝑖 = 𝑥𝑖+1 − 𝑥𝑖 𝑑𝑦𝑖 = 𝑦𝑖+1 − 𝑦𝑖 for 𝑖 = 1,2, … , 5

𝑚𝑖 =
𝑑𝑥𝑖

𝑑𝑦𝑖
for 𝑖 = 1,2, … , 5 𝑠𝑖 = |𝑚𝑖+1 −𝑚𝑖| for 𝑖 = 1,2,3,4

𝑡1 =

𝑚2 +𝑚3

2
𝑖𝑓 𝑠3 + 𝑠1 = 0

𝑠3𝑚2 + 𝑠1𝑚3

𝑠3 + 𝑠1
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑡2 =

𝑚3 +𝑚4

2
𝑖𝑓 𝑠4 + 𝑠2 = 0

𝑠4𝑚3 + 𝑠2𝑚4

𝑠4 + 𝑠2
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑝1 = 𝑦3

𝑝2 = 𝑡1

𝑝3 =
3𝑚3−2𝑡1−𝑡2

𝑑𝑥3

𝑝4 =
𝑡1 + 𝑡2 − 2𝑚3

𝑑𝑥3
2

For 0 ≤ 𝑧 ≤ 𝑑𝑥3

𝐴𝑘𝑖𝑚𝑎𝐼𝑛𝑡𝑒𝑟𝑝 𝑥1, 𝑥2, … , 𝑥6, 𝑦1, 𝑦2, … , 𝑦6, 𝑧 = 𝑝1 + 𝑝2𝑧 + 𝑝3𝑧
2 + 𝑝4𝑧

3

The partial derivatives of the Akima interpolation 

are too complex to include here. To eliminate 

typographical errors, they were generated using 

MATLAB’s Symbolic Toolbox and converted directly 

source code.
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