

CEOS TIR (SST) FRM radiometer comparison

CEOS WGCV IVOS 34 meeting, 02/09/2022, USGS, Reston, VA, USA (Presentation given virtually)

Yoshiro Yamada, National Physical Laboratory, UK Nigel Fox, National Physical Laboratory, UK

5th CEOS TIR radiometer comparison

- Objective
 - To establish degree of equivalence of radiometric scales between field deployed ship-borne TIR radiometers
 - Ensure robust traceability to SI
- > Past Comparisons: 2001 (Miami), 2009 (NPL & Miami), 2016 (NPL)
- Overview of the comparison:
 - Laboratory-based and field-based exercise to compare
 - against the SI via NPL references (lab-comparison)
 - ✓ Blackbodies viewed by reference radiometer
 - ✓ TIR radiometers viewing reference blackbodies
 - against each other (field-comparison).
 - ✓ TIR radiometers as used viewing the ocean

Schedule

Event	Date
Invitation to participate	December 2021
Preparation and formal agreement of protocol	January - May 2022
Preparation of the reference standards, transfer standard and facilities at the NPL	February - April 2022
Participants send preliminary report of measurement system and uncertainty to pilot	May 2022
Calibration of the reference and transfer standards at NPL/ Calibration of the participants' radiometers before dispatch	~ June 2022
Lab Comparison / Field Comparison	June 2022
Stability check measurement of the reference and transfer standards at NPL/ Stability check measurement of the participants' radiometers after return	June - July 2022
Participants send all data and reports to pilot	August 2022
Pre-Draft A result sent to individual participants	September 2022
Draft A report circulated to participants for comments	October 2022
Draft A report (final version) circulated to participants for approval	November 2022
Draft B submitted to CEOS WGCV	January 2023
Final Report published	March 2023

Participants

Attendee	la a Clasta	Institute Short version	Lab comp.		Field access
	institute		Blackbody	Radiometer	Field comp.
Yoshiro Yamada Subrena Harris	National Physical Laboratory United Kingdom	NPL	Pilot	Pilot	(Pilot)
Werenfrid Wimmer	National Oceanography Centre United Kingdom	UoS	✓	√	✓
Tim Nightingale Arrow Lee	STFC Rutherford Appleton Laboratory United Kingdom	RAL	√	√	√
Nis Jepsen	Danish Meteorological Institute Denmark	DMI		√	✓
Nicole Morgan	gan CSIRO / Australian Bureau of Meteorology Australia CSIRO CSIRO		✓		
Frank-M. Göttsche	Frank-M. Göttsche IMK-ASF / Karlsruhe Institute of Technology Germany KIT		✓		
Raquel Niclòs Martin Perello Vicente Garcia-Santos	University of Valencia Spain	UoV	✓	✓	✓

Issues encountered in previous comparison

- The high-emissivity NPL reference standard blackbody aperture was too small
 → alignment covering the FOV was difficult for some of the radiometers
- The time allocated to each participant for measuring the blackbody was too short

This comparison

- ➤ Blackbody comparison: a transfer radiometer is introduced to measure the participant's blackbodies to increase flexibility
- ▶ Radiometer comparison: a second variable temperature blackbody with a larger aperture is introduced to improve efficiency and accuracy

Standard facilities for *blackbody* comparison

P 11	1	C* 4*
Radiomet	tar enaci	tications
Naulollic	ici opeci	Healions

point.

AMBER (Absolute Measurements of Blackbody Emitted Radiance) (reference standard)

Heitronics TRT-IV.82 *New* (transfer standard)

Wavelength	10.1 μm (9 μm – 11 μm)	8 μm - 14 μm
Target size	φ 5 mm	ф 8.7 mm
Measurement distance	70 mm	503 mm
Effective lens diameter	φ 13 mm	φ 57 mm
Scale realization	Through relative spectral response measurement and a	By comparison with AMBER
	fixed-point blackbody measurement at the Ga melting	

Standard facilities for radiometer comparison

Traceability of reference instruments

Measurement temperature points

Comparison type	Nominal temperature / °C
Blackbody comparison *1	10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60
Radiometer comparison	
Ammonia heatpipe BB *1	-30, -15, 0, 30, 35, 40, 50
Stirred liquid bath BB	0, 10, 20, 30

*1: Higher temperature points included for LST interest

Lab comparison 13th -17th June, 2022, @ NPL, Teddington, UK

Radiometer comparison

Blackbody comparison

Field comparison 20th -24th June, 2022, @ Boscombe Pier, Bournemouth, UK

Location

The Pier

Field comparison

Preparation

After set-up

Future plans

- Data analysis in progress
- Reports to be submitted to CEOS WGCV and published
- Journal papers to be produced

FUNDED BY BEIS

The National Physical Laboratory is operated by NPL Management Ltd, a wholly-owned company of the Department for Business, Energy and Industrial Strategy (BEIS).