

SENTINEL-3 MISSION OVERVIEW

- **Operational Mission**: constellation of 2 satellites flying on same orbital plane separated by 140° currently Sentinel-3A (launched 2016) and Sentinel-3B (2018) (B in advance of A)
- Orbit: polar, sun-synchronous at altitude of 815 km
- **Payload**
 - Optical: OLCI and SLSTR
 - Topography: SRAL, MWR, POD support

Storage Tent

Longer Term Mission Continuity: ensured by Sentinel-3C (launch planned Q4/24 - Q1/25) and Sentinel-3D (2025-2028)

Images courtesy of TAS-F

Microwave

Radiometer

Sea and Land Surface

Temperature Radiometer

Ocean and

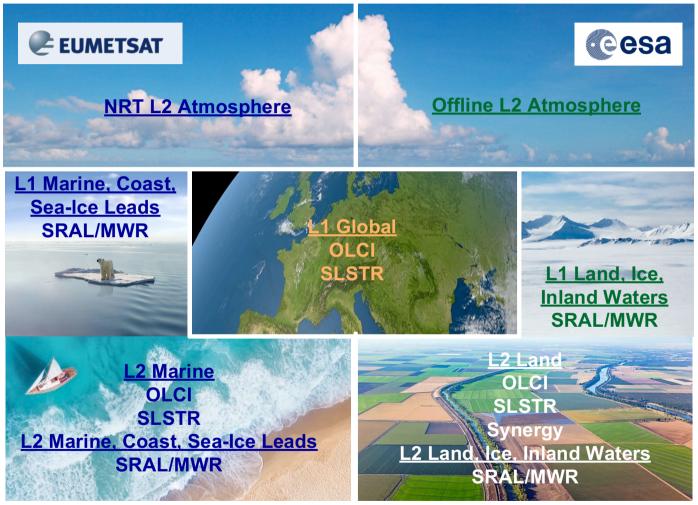
Land Colour

Instrument

SAR Radar Altimeter

SENTINEL-3 OVERALL MISSION STATUS

- The **Sentinel-3A** and **Sentinel-3B** missions are operating well with no significant issues to report
 - Satellite availability remains high with a lifetime beyond that expected by the design
 - Both ESA and EUMETSAT Ground Segments are operating well and delivering products to users within the expected targets (outside of planned maintenance activities or ground/space segment anomalies)
- The 3rd Mission Constellation Review (covering operations during 2021) held on 12th January confirmed the mission continues to meet the applicable requirements within the known and documented limitations, noting that improvements/mitigations are planned in the future
- The 4th Mission Constellation Review (for 2022) is planned for 28 March 2023
- The **Sentinel-3C** and **Sentinel-3D** satellites have successfully completed their final reviews and are now being readied for on-ground storage
- More information on how you can access Sentinel-3 data can be found here:
 - ESA: https://sentinel.esa.int/web/sentinel/missions/sentinel-3
 - EUMETSAT: https://www.eumetsat.int/sentinel-3

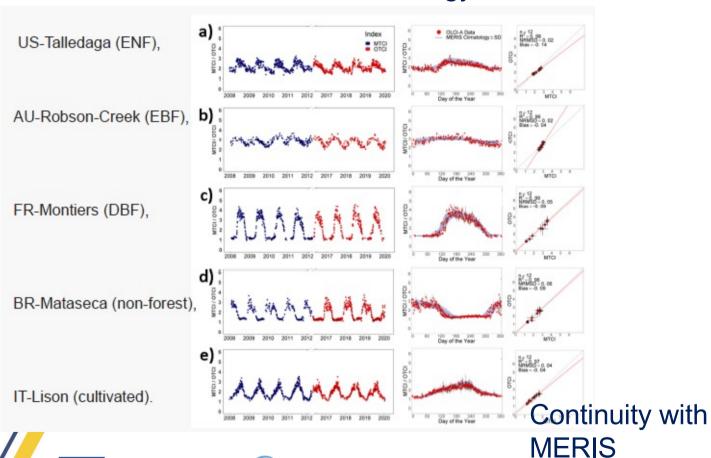


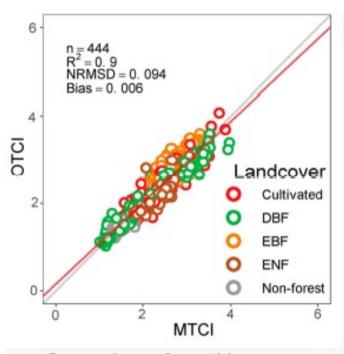
SENTINEL-3 MISSION DATA PRODUCT RESPONSIBILITIES

SENTINEL-3 ESA OPTICAL DATA PRODUCTS

- OLCI L1B TOA radiances
- OLCI L2:
 - OLCI Terrestrial Chlorophyll Index OTCI
 - Green Instantaneous FAPAR GIFAPAR (formerly OGVI)
 - Integrated Water Vapour IVW
- SLSTR L1B TOA TIR Brightness Temperatures/VIS&SWIR Radiances
- SLSTR L2:
 - Landsurface Temperature LST
 - Fire Radiative Power FRP
- SYNergy L2:
 - Surface Directional Reflectance SDR
 - Proba-V continuity SYN-VGLike

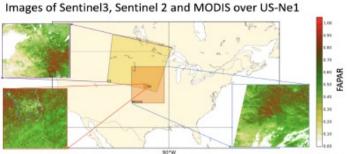
OLCI & SLSTR monthly Data Quality Reports for L1 and L2 available on Sentinel Online

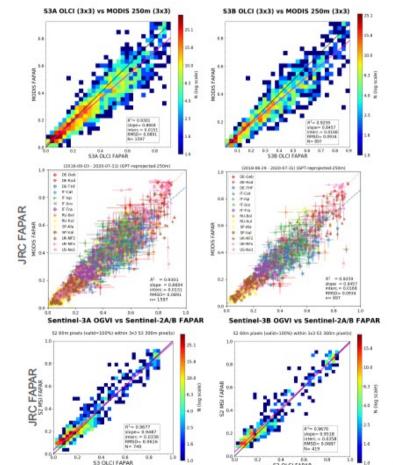




SENTINEL-3 OLCI L2 OTCI STATUS (OPT-MPC SOUTHAMPTON UNIVERSITY)

Indirect Validation: MERIS Climatology and Validation Sites




SENTINEL-3 OLCI L2 GIFAPAR STATUS (JOINT RESEARCH CENTER)

Consistency with MODIS and Sentinel-2 FAPAR retrievals systematically done over a selection of sites.

OGVI to GIFAPAR name change end of 2021.

Code	Latitude(°N+)	Longitude(°E+)	MGRS ^a	Land Cover Type
				7
DE-Geb	51.1001	10.9143	32UPB34036269	Croplands
DE-Ros	50.8300	11.7700	32UPB95063457	Croplands,Evergreen Needleleaf Forest,Deciduous Needleleaf Forest
DE-Thf	50.5730	10.8450	32UPB30640396	Mixed Forest
IT-Cat	37.278531	14.883261	33SVB89652577	Croplands (Orange)
IT-Isp	45.8128	8.6345	32TMR71537329	Mixed Forest
IT-Sro	43.7278	10.2844	32TPP03444244	Pinus Pinea
IT-Tra	37.645561	12.852736	33SUB10566865	Croplands (Vineyards and olive trees)
RU-Bol	57.05	93.37.	46VEJ22442301	Mixed Forest
RU-Kul	52.561106	80.708522	44UMD80242348	Cultivated Areas
SP-Ala	38.451556	-1.064556	30SXH68885769	Semi-arid Mediterranean
SP-Val	39.5207193	-1.29259339	30SXJ46767595	Semi-arid Mediterranean
UK-Nfo	50.84984	-1.57406	30UXB00378341	Natural deciduous forest
US-Ne1	41.165	-96.4766	14TQL11706015	Croplands (Maize)
US-Ne2	41.1648	-96.4701	14TQL12246014	Croplands (Irrigated Maize Soybean rotation)
US-Ne3	41.1797	-96.4396	14TQI14746186	Croplands (Irrigated Maize Soybean rotation)

SENTINEL-3 OLCI L2 INTEGRATED WATER VAPOUR (FMI)

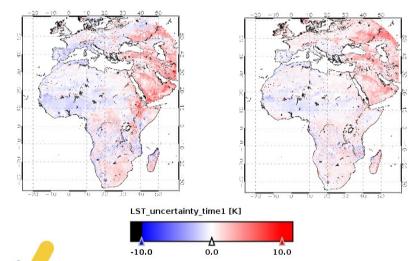
IWV over Water & Land

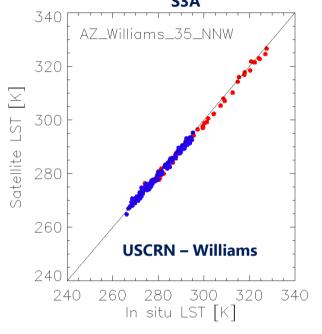
60 OLCI-A [kg/m²] 8 05 05 OLCI-A [kg/m²] 8 8 8 SUOMINET [kg/m²] SUOMINET [kg/m²] SUOMINET [kg/m²] SUOMINET [kg/m²]

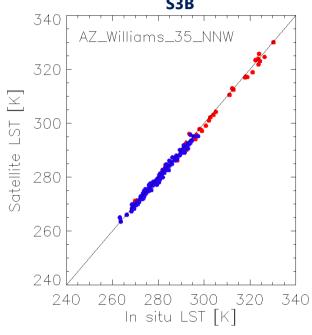
OLCI-A (left) and -B (right) against SUOMINET Color field shows the number of matchups within 1 kg/m² x 1 kg/m² bin. Black dashed line shows the x = y line and the red lines median (dashed) and 16th and 84th percentiles (dotted) OLCI-A observation for each 2 kg/m² IGRA bin.

Comparisons to IGRA and TCCON show similar results. Wet bias is stronger over water with also more wet outliers present. 11% over Water&Land and 9% over only land.

IWV over Land





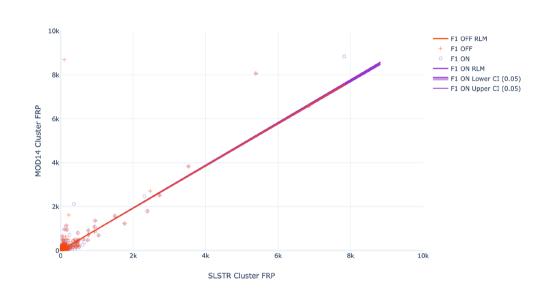

SENTINEL-3 SLSTR L2 LST STATUS (OPT-MPC LEICESTER UNIVERSITY

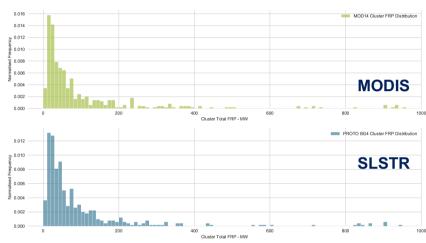
- S₃B S₃A
- Throughout the different validation sites LST is demonstrating to be within 1K accuracy requirement for both A - B
- Intercomparison with SEVIRI LST from LSA SAF shows that products are comparable within their uncertainty range

S3 A&B vs SEVIRI February 2020 Daytime

Latest product evolutions include:

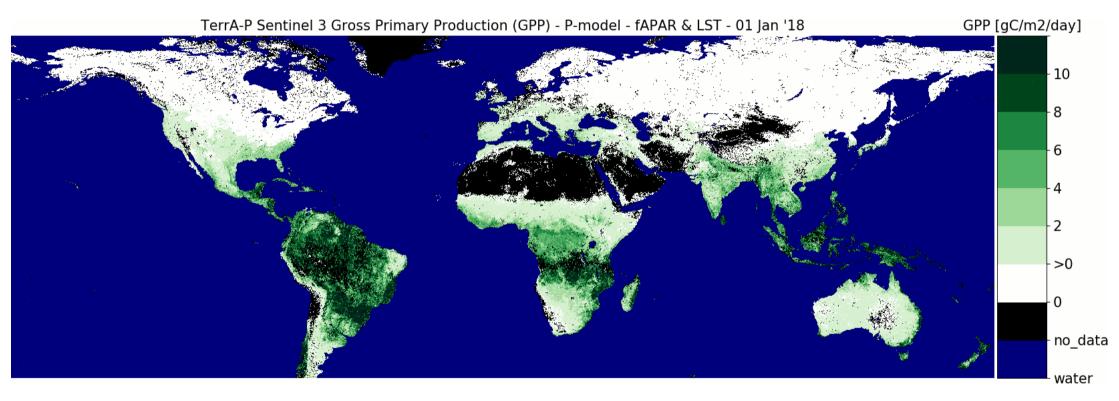
- consolidated L2 uncertainties taking into account random, locally correlated atmospheric, locally correlated surface, locally correlated instrument and large-scale systematic contributions -> First Sentinel Dataset to do so.
- Transient snow masking based on NSIDC Snow mapping and VIS/SWIR-TIR channels to filter out pixels with a spectral signature corresponding to snow cover.



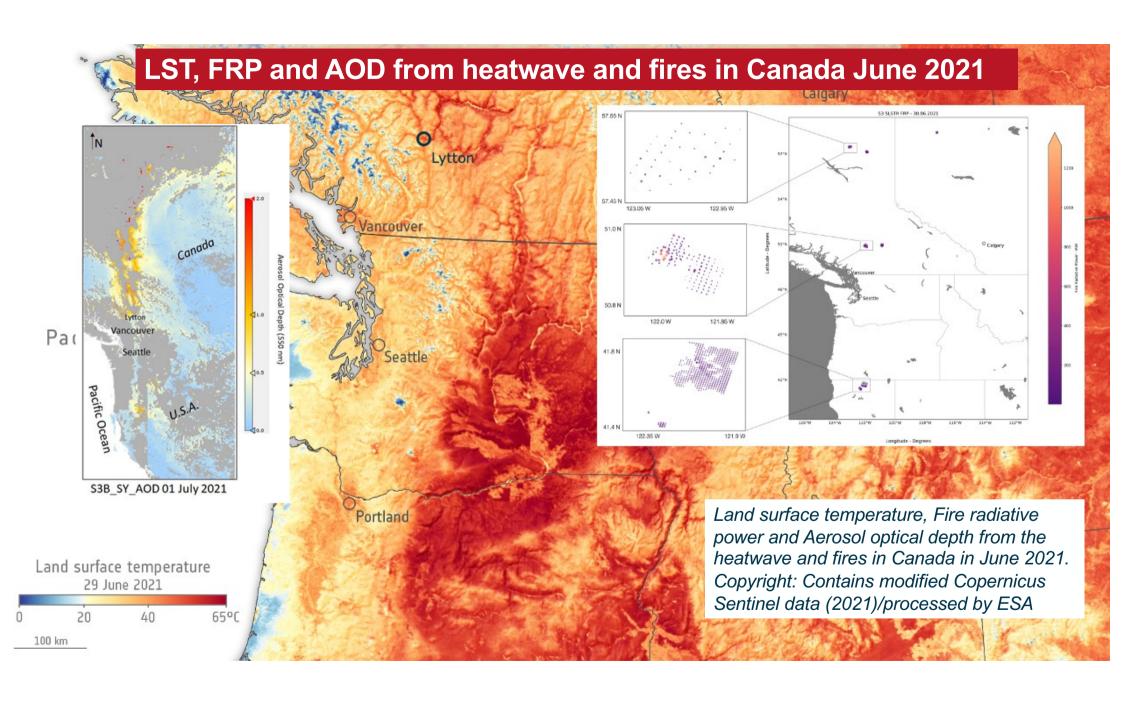


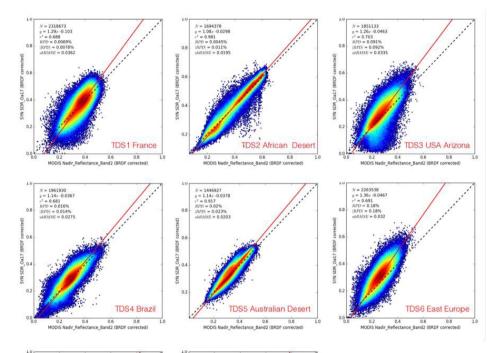
SENTINEL-3 SLSTR L2 FRP STATUS (OPT-MPC PS & KCL)

- At nighttime SLSTR detects 35% more AF pixels than MODIS with an omission of about 7%
- SLSTR has a negative bias of ~18.2 MW compared to MODIS
- Recently we improved significantly the daytime retrieval part of algorithm for which validation is ongoing
- Some issues with +ve F1 anomalies downscan of clouds causing false AF detections. Need to have improved cloud screening as well.



GROSS PRIMARY PRODUCTION (GPP) FROM SENTINEL-3


S3-derived GPP covering Jan-Dec 2018 in 10-days steps Copyright: Contains modified Copernicus Sentinel data (2022) processed by VITO

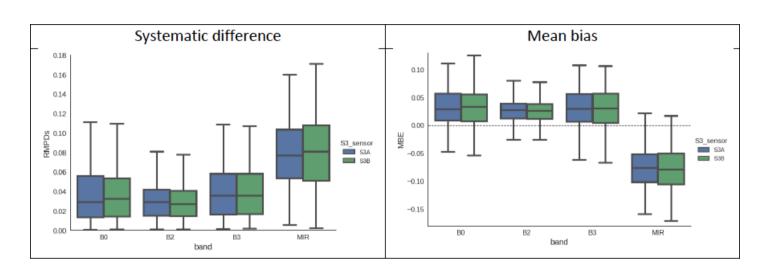


Sentinel-3 SYN Surface Reflectance vs MODIS (OPT-MPC ACRI-ST)

Intercomparison with MODIS for different surface types

REFERENCE SDR SYN (Oa17) vs. MODIS (b2)					
Scene	r^2	RPD	ubRMSE		
TDS1	68.8%	0.8%	3.62%		
TDS2	98.1%	1.1%	1.95%		
TDS3	70.3%	9.2%	3.35%		
TDS4	68.1%	1.4%	2.75%		
TDS5	91.7%	2.3%	2.03%		
TDS6	69.1%	18.0%	3.20%		
TDS7	19.8%	4.0%	2.25%		
TDS8	48.8%	1.1%	5.38%		

Despite an overestimation of the AOD the reflectance is retrieved generally consistently with MODIS.



Sentinel-3 SYN-VGP ToA Reflectance vs Proba-V (OPT-MPC VITO)

SY_VGP and PROBA-V L2A top-of-atmosphere (TOA) products with closest match in acquisition time over a 3 months period 01/07/2020 – 30/09/2020. The number of product match-ups is 608 for S3A, 610 for S3B.

For bands B0 (blue), B2 (red) and B3 (NIR), a mean bias of around 3% is observed, with SY_VGP being brighter than PROBA-V L2A

- differences in absolute calibration,
- SPOT4-VGT1 spectral response functions are used in the spectral band mapping procedure to generate SYN VGT products.

Both the systematic differences and the mean bias indicate large inconsistencies between \$Y_VGP and PROBA-V L2A for the MIR band, with biases of around 8%

largely attributed to the calibration issues of SLSTR

Sentinel-3 News and Tools

- L1 radiometric uncertainty model for OLCI
 - Detailed model to estimate the instrument radiometric uncertainties at L1
 - First Sentinel L1 product to include this
 - Users can choose to download the per pixel uncertainty information or not
 - To be deployed end of August
- SYNergy L1c Tool
 - Developed by Brockmann-Consult as part of the S3-MPC activities.
 - TOA SYNergy radiances for OLCI and SLSTR VIS/SWIR channels on OLCI image grid
 - SNAP Plug-in to be installed via SNAP plug-in manager
 - Running operationally in CGLS Ground Segment as input into the L2 processing
- ICOR4S3 SNAP Plug-In to create OLCI-only Surface reflectances
 - Developed by VITO and available from VITO Website
 - Surface reflectances for OLCI channels based on ICOR atmospheric correction

