

LIME: Lunar Irradiance Model of ESA

Stefan Adriaensen (VITO), Africa Baretto (UVa), Agnieska Bialek (NPL), <u>Marc Bouvet</u> (ESA), Javier Gatón Herguedas (UVa), Chris Maclellan (NPL), Carlos Toledano (UVa), Pieter De Vis (NPL)

- The LIME model: overview and status
- Comparison of LIME output to lunar disk irradiance measurements
- A hyperspectral measurement campaign to better understand the moon reflectance spectrum
- LIME toolbox

The LIME model

- LIME is based upon ROLO model
- Derived using SI-traceable ground-based measurements acquired with CIMEL 318-TP9 photometer from high altitude location at Teide Peak and Izaña Atmospheric Observatory in Tenerife
- Characterization and calibration at NPL and University of Valladolid
- Uncertainty computation based on Monte Carlo simulations accounting for calibration, modelling and measurement uncertainties

The LIME measurements

CIMEL 318-TP9

	Specification	value			
	Irradiance precision	< 0.1%			
Field of view		1.3°			
	Minimal scaterring angle from the sun	2°			
	Spectral range	340 to 1640 nm			
	Optical filter drift	< 1% / year			
	Automated mount	Azimuth and zenith motors			
Sky angular scanning		Whole sky : Azimuth: 0 – 360° Zenith: 0 – 180°			
	Mechanical precision spot	0.003°			
	Solar tracking precision	0.01°			
	Power consumption	< 2W			
	Interferential filter bandwidth	< 30 nm			
	Total weight without support	25 kg			
	Power supply	Autonomous through solar panel			
	Mode	Sun, Sky, Lunar			
	memory	32 GB on SD card			
	Solar and moon scanning	4 quadrant sensor			
	Temperature	-30 to 70° C			
	humidity	0 to 100 %			
	RS232 (up to 100 m cable)	9600 baud/s			
	Numeric count dynamic	0 to 2 097 152			

CE318-TP9 Filters

$$L(V_{A+B}) = \frac{V_{A+B}}{(V_A + V_B)}$$

Universidad deValladolid

Temperature Sensitivity (UVa)

Pico Teide	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Percentile 98 [°C]	7.7	8.0	8.7	11.7	14.1	16.6	18.7	18.8	15.1	13.0	9.9	7.5
Percentile 2 [°C]	-9.5	-12.0	-8.1	-5.7	-2.7	1.8	5.0	5.0	1.9	-3.5	-5.9	-8.2

$$\boldsymbol{F}_{\boldsymbol{T}} = \left[1 + \boldsymbol{C}_{1,\boldsymbol{i}}(\boldsymbol{T} - \boldsymbol{T}_{\text{ref}}) + \boldsymbol{C}_{2,\boldsymbol{i}}(\boldsymbol{T} - \boldsymbol{T}_{\text{ref}})^2\right]$$

Irradiance Responsivity

Spectral Channel	Calibration Coefficient (MOON gain)	Standard uncertainty
440 nm Si	5.759 × 10 ⁻¹⁰	0.97%
500 nm Si	4.481 × 10 ⁻¹⁰	0.96%
675 nm Si	3.205 × 10 ⁻¹⁰	0.92%
870 nm Si	2.547 × 10 ⁻¹⁰	0.91%
937 nm Si	2.431 × 10 ⁻¹⁰	0.97%
1020 nm Si	2.735 × 10 ⁻¹⁰	1.05%
1020 nm InGaAs	2.119 × 10 ⁻¹⁰	1.01%
1640 nm InGaAs	4.893 × 10 ⁻¹¹	1.06%

 $C_{\bar{E},\text{CIMEL}}(\lambda_i) = \frac{\left(\sum_j E_{\text{lamp},x}(\lambda_j)\xi_i(\lambda_j)\delta\lambda\right)F_T}{G_{\text{ratio}}\left[D_{\text{CIMEL,lamp},x}(\lambda_i) - D_{\text{CIMEL,dark}}(\lambda_i)\right]}$

CIMEL Stability by Solar Langley Calibration

	Extraterrestrial Sun counts on	Extraterrestrial Sun counts	
WLN	23/06/2018	25/06/2020	Difference(%)
1020	628596.4	631346	0.44
1640	1114638.9	1114576	-0.01
870	882649.8	885586	0.33
675	1111487.4	1114076	0.23
440	760622.6	761067	0.06
500	1026944.7	1029153	0.21
1020i	805945.7	808002	0.25
935	827605.4	814508	-1.60
380	129951	126758	-2.49
340	43550.4	43042	-1.17

LUNAR IRRADIANCE MODEL OF ESA

Lunar disc irradiance measurements

$$ln(V^{s}(\lambda,t)) = ln(V_{0}^{s}(\lambda)) - m(\theta)\tau_{\lambda}$$

$$V'(\lambda,t) = V(\lambda,t) \frac{A(t_{ref},\lambda)}{A(t,\lambda)}$$

Model Regression Overview

Lunar irradiance measurements at 440 nm based on more than 3+ years of measurements (about 400 lunar irradiance measurements)

- Based upon the work done by Kieffer and Stone [Kieffer and Stone,2005]
- Minor adaptations to the model formulation discussed with T. Stone

Lunar Irradiance Model

$$\ln(A_k) = \sum_{i=0}^3 a_{ik}g^i + \sum_{i=1}^3 b_{ik}\Phi^{2i-1} + c_1\theta + c_2\phi + c_3\Phi\theta + c_4\Phi\phi + d_{1k}e^{-\frac{g}{p_1}} + d_{2k}e^{-\frac{g}{p_2}} + d_{3k}\cos\left(\frac{g-p_3}{p_4}\right)$$

- k = model spectral band
- A = lunar reflectance
- *g* = absolute phase angle [radians]
- θ = selenographic latitude of observer [degrees]
- ϕ = selenographic longitude of observer [degrees]
- Φ = selenographic longitude of the Sun [radians]

Coefficient Regression

wl[nm]	a0	a1	a2	a3	b1	b2	b3
440	-2.26317	-1.95341	0.691585	-0.30189	0.052456	0.008714	-0.00415
500	-2.15048	-1.82816	0.59675	-0.27933	0.050078	0.010695	-0.00382
675	-1.91452	-1.72298	0.562315	-0.2762	0.047094	0.012212	-0.00484
870	-1.81647	-1.5906	0.465803	-0.24815	0.046823	0.018782	-0.007
1020	-1.75279	-1.50502	0.401689	-0.22989	0.052412	0.021768	-0.00864
1640	-1.47438	-1.21778	0.189073	-0.16837	0.047555	0.011999	-0.00487
wl[nm]	c1	c2	c3	c4	d1	d2	d3
440	0.001217	-0.00036	0.00161	0.000732	-0.09294	2.000626	-0.00571
500	0.001117	-0.00041	0.00178	0.000945	12.96653	-12.422	-0.00273
675	0.001113	-0.00043	0.00171	0.000936	9.886489	-9.75239	-0.00594
870	0.001153	-3.74E-04	0.001882	0.000895	10.47813	-10.3637	-0.00342
1020	0.001044	-4.50E-04	0.001817	0.000837	11.93628	-11.8154	-0.00255
1640	0.000945	-4.90E-04	0.001732	0.001093	14.32673	-14.4102	3.48E-06
	p1	p2	р3	p4			
all	1.35446	1.314674	9.324089	9.596769			

Universidad de Valladolid

Uncertainty Analysis

Error Correlation Structures

Errors can be correlated between:

- Individual points on the Langley (within one night)
- Individual nights
- Spectral bands

	Langley points	Nights	Spectral
Calibration	С	С	PC
Instrument Noise	I.	I.	I. I.
Temperature	С	I	С
Aerosol variability	PC	I. I.	С

C = correlated; I = independent; PC = Partially correlated

Uncertainty Analysis

- Perform Monte Carlo analysis to define total uncertainty
- Including the uncertainty related to the model regressions
- 1000 models by modifying the input
- Introduced perturbation based upon the instrument and measurement uncertainty

$$E_{i,\lambda} = E_{i,\lambda}^{\mathsf{True}} \times (1 + R_{i,\lambda})(1 + S_{\lambda})(1 + C)$$

Degree of Linear Polarisation measurements

vision on technology

Universidad de Valladolid

Degree of Linear Polarisation model

Modelled DoLP for all wavelengths (negative phase angle)

Comparison Procedure

Model Input

- Timestamp of the acquisition
- Position of the instrument/platform (J2000 coordinates)
- Irradiance

Using these parameters, the model calculates the geometry parameters required for the comparison:

- Phase angle
- Solar selenographic longitude
- Observer selenographic latitude and longitude
- Distances between Sun, Moon and observer.

Spectral Model using the ROLO approach: Apollo/Breccia spectrum

Pleiades-1B

Date	B0	B1	B2	B3	PAN
01/12/2012	1.117	1.085	1.075	1.015	1.034
01/09/2013	1.112	1.079	1.071	1.013	1.034
01/12/2013	1.110	1.078	1.070	1.012	1.034
01/03/2014	1.108	1.076	1.069	1.011	1.034
01/06/2014	1.106	1.074	1.067	1.011	1.034
01/09/2014	1.104	1.072	1.066	1.010	1.034
01/12/2014	1.103	1.070	1.065	1.009	1.034
01/03/2015	1.100	1.068	1.064	1.008	1.034
01/06/2015	1.099	1.066	1.062	1.008	1.034
01/09/2015	1.097	1.064	1.062	1.007	1.034
01/12/2015	1.095	1.061	1.062	1.006	1.034
01/03/2016	1.093	1.061	1.062	1.006	1.034
01/06/2016	1.090	1.056	1.054	1.003	1.032
01/09/2016	1.089	1.055	1.053	1.003	1.031
01/01/2017	1.087	1.053	1.050	1.001	1.029
01/03/2017	1.085	1.051	1.048	1.000	1.028

PHR1B calibration table

Pleiades-1B vs LIME

PHR1B band 1 vs. USGS ROLO (blue) and LIME (red)

Pleiades-1B vs. LIME

%	BLUE	GREEN	RED	NIR	PAN
AVG	3.204	4.678	4.353	6.599	5.867
STDEV	1.497	1.243	1.062	1.232	9.599

Comparisons with GIRO

LIME vs. GIRO at 650nm

%	461	650	840	1604
AVERAGE	4.759	3.652	3.396	3.155
STDEV	1.512	0.917	0.836	1.201

- Simulation for one year of data
- Configured with Proba-V spectral response

Comparison against S3A/B OLCI

Sensor	Timestamp
S3B	2018-07-27T05:22:43
S3A	2020-07-04T16:13:05

See also Neneman, M.; Wagner, S.; Bourg, L.; Blanot, L.; Bouvet, M.; Adriaensen, S.; Nieke, J. Use of Moon Observations for Characterization of Sentinel-3B Ocean and Land Color Instrument. Remote Sens. **2020**, 12, 2543.

Comparison against Proba-V

BAND	BLUE	RED	NIR	SWIR
%	450nm	645nm	834nm	1665nm
AVG	-1.685	0.044	2.098	26.607
STDEV	1.935	1.988	1.297	0.854

Full mission Proba-V NIR channel vs. LIME

Hyperspectral measurements – improving the spectral interpolation of CIMEL measurements

Directional Response Function @ 550 nm for ASD 1° Fore-Optic with Scrambler

Hyperspectral instrument based on:

- ASD FieldSpec4
- Foreoptics (with scrambler) with
 1 deg FOV
- Neutral density filter of Sun measurements

Characterised / calibrated at NPL

Hyperspectral measurements – improving the spectral interpolation of CIMEL measurements

 Automated daily acquistions covering 3 lunar cycles in spring 2022 (to be continued after summer)

Hyperspectral measurements – improving the spectral interpolation of CIMEL measurements

Reflectance spectra for various phase angles

Universidad deValladolid

LIME Toolbox development (ongoing)

- Ongoing development allowing to simulate lunar irradiance based on LIME for any sensor position/spectral bands.
- Expected end 2023.
- Available to the community.

- LIME model now based on 3+ years of continuous lunar measurements
- Yearly updates available on cal/val portal
- Ongoing efforts to continue to improve the model (new hyperspectral measurements, comparisons to sensors, e.g., air-LUSI)
- LIME toolbox should be available soon to the cal/val community

Thank you!

http://calvalportal.ceos.org/lime

Universidad de Valladolid