

CEOS AC-VC GHG White Paper

Architecture for Monitoring Carbon Dioxide and Methane from Space

David Crisp, Jet Propulsion Laboratory,
California Institute of Technology, NASA

CEOS WGCV IVOS 31, CSIRO, Perth, Australia

25-29 March 2019

© 2019 California Institute of Technology. Government sponsorship acknowledged.

Objectives of the AC-VC GHG White Paper

- The CEOS Chair commissioned the Atmospheric Composition Virtual Constellation (AC-VC) to write a white paper that defines the key characteristics of a global architecture for monitoring atmospheric CO₂ and CH₄ concentrations and their natural and anthropogenic fluxes from instruments on space-based platforms to:
 - reduce uncertainty of national emission inventory reporting;
 - identify additional emission reduction opportunities and provide nations with timely and quantified guidance on progress towards their emission reduction strategies and pledges (Nationally Determined Contributions, NDCs); and,
 - to track changes in the natural carbon cycle caused by human activities (deforestation, degradation of ecosystems, fire) and climate change

AC-VC White Paper Structure

- 166-page document
 - 88 authors representing 47 organizations
- Executive Summary (2 pages)
 - Overview of objectives and approach
 - Intended for policy makers, CEOS/CGMS Agency leads
- Body of report (75 pages)
 - Science background and requirements
 - Current and near-term mission heritage
 - System implementation approach
 - Intended for program scientists and project managers
- Technical Appendices (42 pages)
 - "Textbook" summarizing state-of-the-art in observation capabilities and analysis methods to justify systemlevel requirements
 - Intended for scientists, engineers, and inventory community

A CONSTELLATION ARCHITECTURE FOR MONITORING CARBON DIOXIDE AND METHANE FROM SPACE

Prepared by the CEOS Atmospheric Composition Virtual Constellation Greenhouse Gas Team Version 1.2 – 11 November 2018

© 2018. All rights reserved

http://ceos.org/document_man agement/Virtual_Constellation s/ACC/Documents/CEOS_AC -VC_GHG_White_Paper_Publ ication_Draft2_20181111.pdf

White Paper Contents – Main Text

Executive Summary

- **Chapter 1: Introduction**
- Chapter 2: Estimating Emissions from Atmospheric CO₂ and CH₄
 Measurements
- Chapter 3: Space-based CO₂ and CH₄ Measurement Capabilities and Near-term Plans
- Chapter 4: The Transition from Science Missions to an Operational Constellation
- Chapter 5: Designing an Operational LEO Constellation for Measuring Anthropogenic CO₂ Emissions The Sentinel CO₂ Initiative
- Chapter 6: Integrating CO₂ and CH₄ Satellites into Operational Constellations
- Chapter 7: Conclusions and Way Forward

White Paper Contents - Appendices

A1: Remote sensing retrieval methods for estimating XCO₂ and XCH₄ from observations of reflected sunlight

A2: Methods for quantifying surface fluxes of CO₂ and CH₄ from space-based XCO₂ and XCH₄ estimates

A3: Observation system simulation experiments (OSSEs)

A4: Lessons learned from SCIAMACHY, GOSAT and OCO-2

A5: Greenhouse gas monitoring satellites from commercial organizations & non-governmental organizations

A6: Advantages of LEO, GEO and HEO vantage points

A7: CEOS Agencies implementing CO₂ and CH₄ missions

A8: Acronym List

References Cited

A System Approach to an Atmospheric Inventory System

Observations

Satellite Measurements of CO₂ and CH₄

Ground and Airborne Measurements of CO₂ and CH₄

Meteorology Satellite & in-situ

Auxiliary Data Satellite observations of CO, NO2, clouds, aerosols...

Prior Information

Fluxes, model parameters, emission reports, economic statistics.

Integration & Attribution

Estimation system

Data assimilation and uncertainty estimation

Models

Transport, land & ocean carbon cycle, fossil fuel emissions.

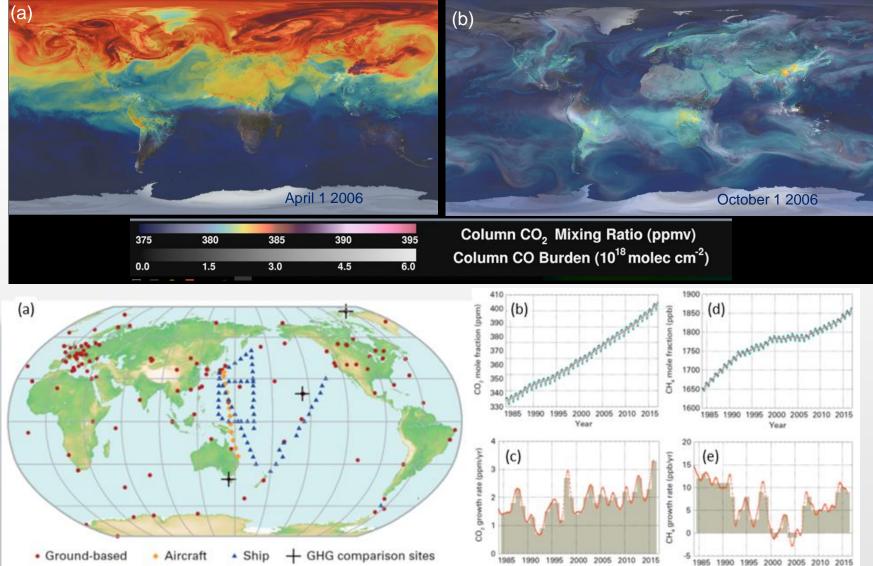
CO₂ and CH₄ emissions & removal Hot-spots with uncertainties

Country/region CO₂ and CH₄ emissions & removals with uncertainties

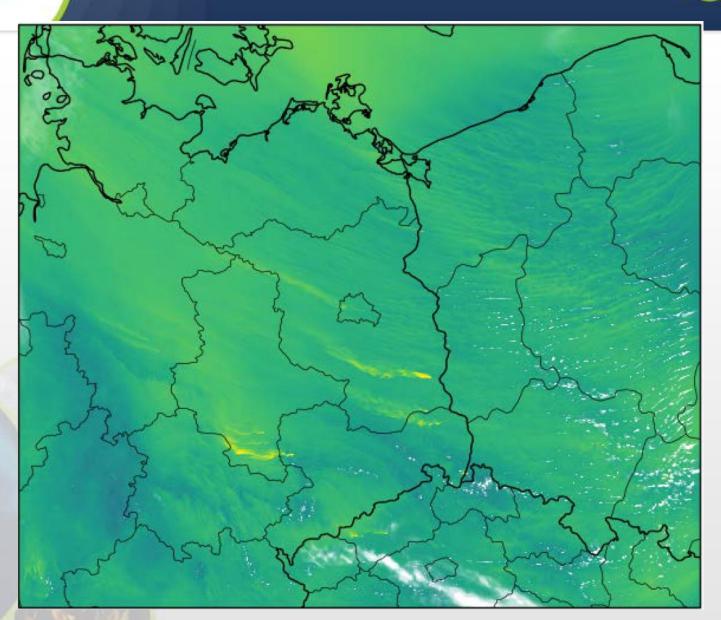
Other Carbon Cycle **Products**

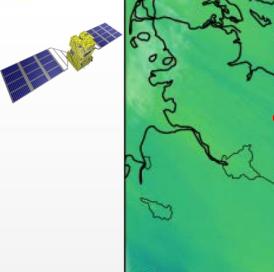
Updating the GCOS CO₂ and CH₄ Requirements

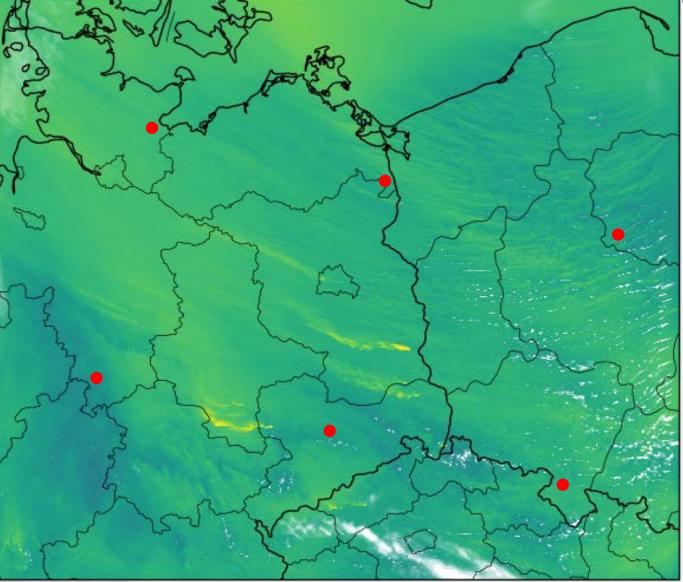
The CO₂ and CH₄ measurement requirements in the 2011 update for the Global Climate Observing System (GCOS) Systematic Observation Requirements for Satellite-Based Data Products for Climate (GCOS, 2011) were adopted as targets for a future GHG constellation.


	Variable / Parameter	Horizontal Resolution	Vertical Resolution	Temporal Resolution	Accuracy	Stability/ Decade*
	Tropospheric CO ₂ column	5-10km	N/A	4 h	1 ppm	0.2 ppm
	Tropospheric CO ₂	5-10 km	5 km	4 h	1 ppm	0.2 ppm
	Tropospheric CH ₄ column	5-10 km	N/A	4 h	10 ppb	2 ppb
	Tropospheric CH ₄	5-10 km	5 km	4 h	10 ppb	2 ppb
	Stratospheric CH ₄	100-200 km	2 km	Daily	5%	0.30%

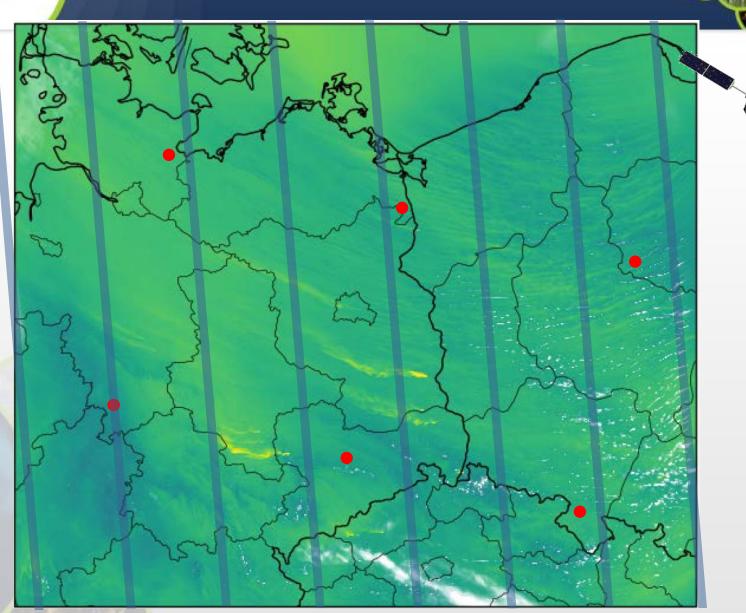
We are currently working with GCOS to refine these requirements

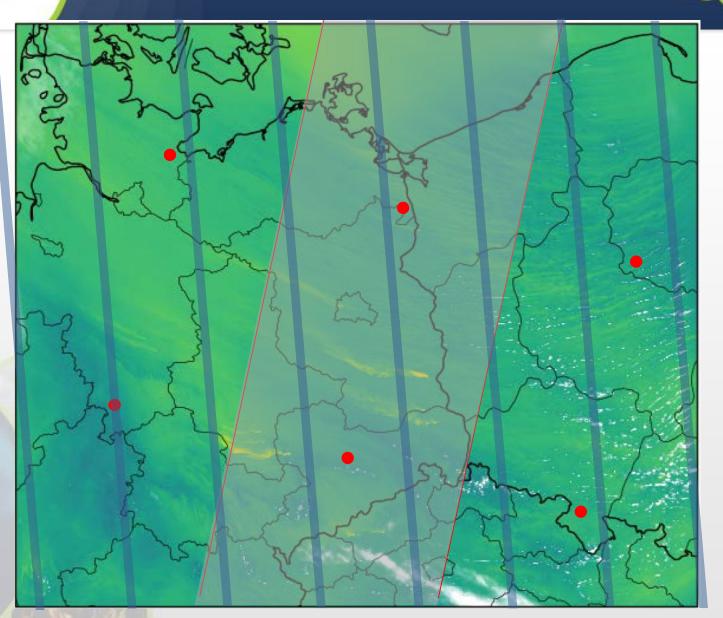

The Ground-based Context


Coverage and Resolution Requirements



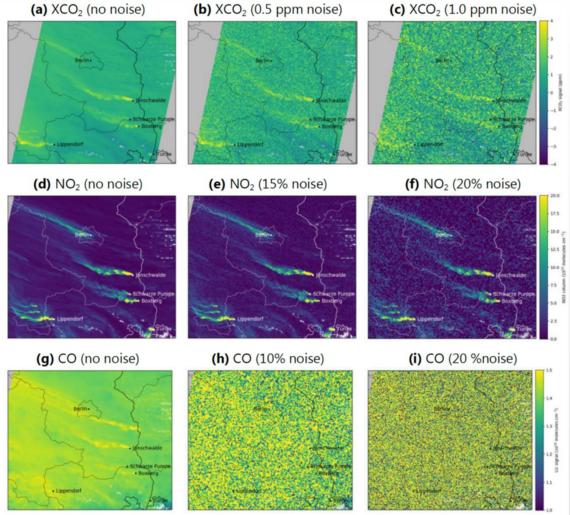
GOSAT Sampling



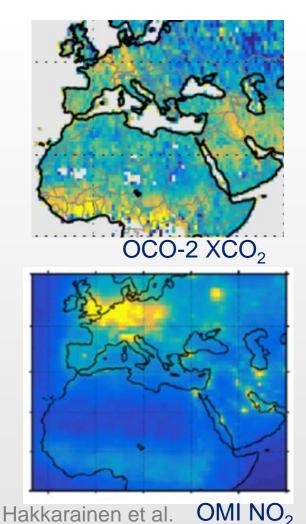


GOSAT+OCO-2 sampling

A Future Broad-swath CO2 Imager



Precision Requirements and Ancillary Measurements



Models

Kuhlmann et al., ESA/SMARTCARB

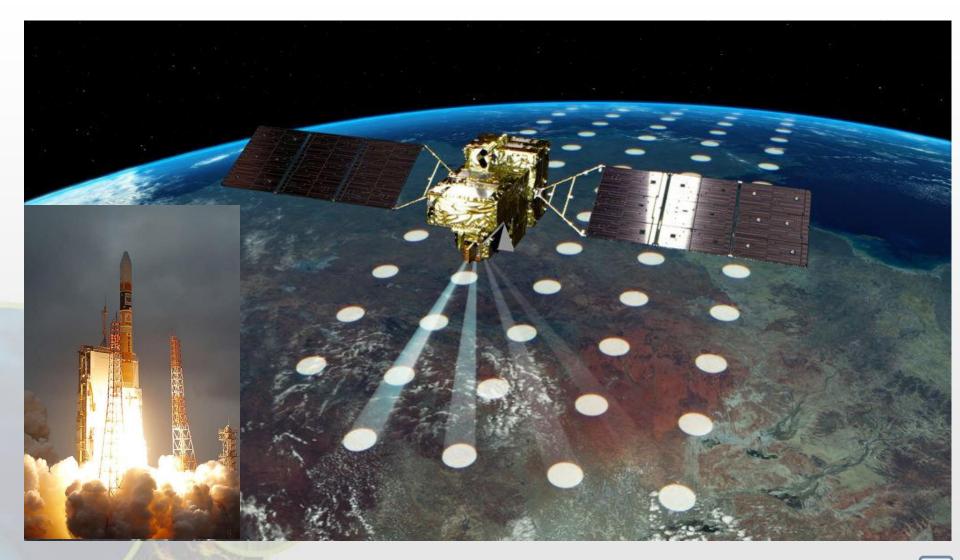
Measurements

A Candidate Operational CO2/CH4 Constellation Architecture

The coverage, resolution, and precision requirements could be achieved with a constellation that incorporates

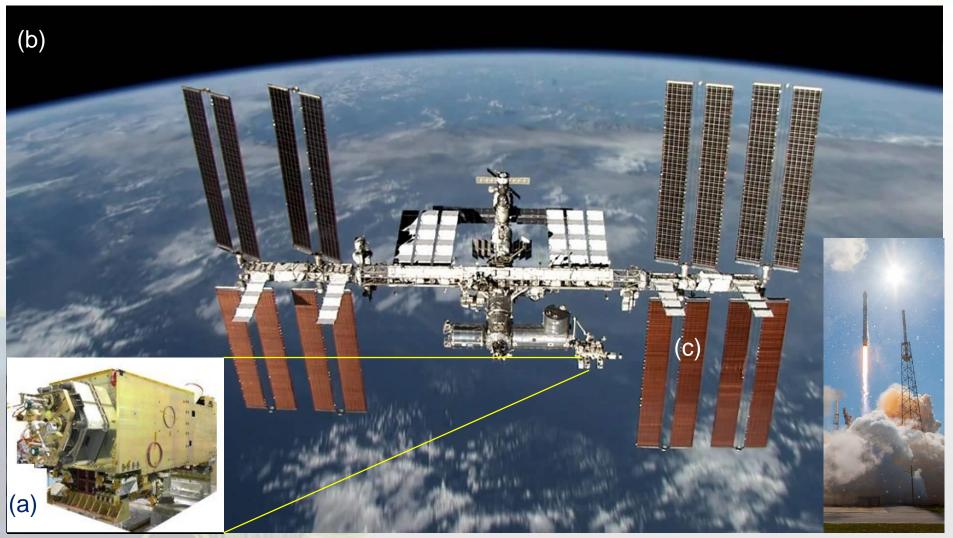
- A constellation of 3 (or more) satellites in LEO with
 - A broad (> 200) km swath with a mean footprint size < 4 km²
 - A single sounding random error near 0.5 ppm, and vanishing small regional scale bias (< 0.1 ppm) over > 80% of the sunlit hemisphere
 - One (or more) satellites carrying ancillary sensors to identify plumes
 (CO, NO₂) or to detect and mitigate biases (CO₂ and/or CH₄ Lidar)
- A constellation with 3 (or more) GEO satellites
 - Monitor diurnally varying processes (e.g. rush hours, diurnal variations in the biosphere)
 - Stationed over Europe/Africa, North/South America, and East Asia
- This constellation could be augmented with one or more HEO satellites to monitor carbon cycle changes in the high arctic

The Evolving CO₂/CH₄ Fleet

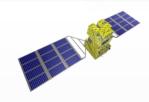


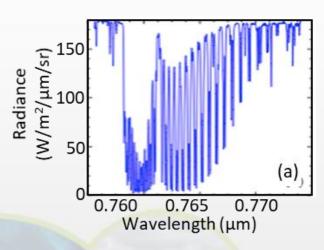
Satellite, Instrument (Agencies)	CO ₂ CH ₄	Swath	Sample	2002		2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
ENVISAT SCIAMACHY (ESA)	• •	960 km	30x60 km ²																			
GOSAT TANSO-FTS (JAXA-NIES-MOE)	• •	3 pts	10.5 km (d)																			
OCO-2 (NASA)	•	10.6 km	1.3x2.3 km ²																			
GHGSat (Claire)	•	12 km	0.0004 km ²																			
TanSAT (CAS-MOST-CMA)	•	20 km	1x2 km²																			
Sentinel 5P TROPOMI (ESA)	•	2600 km	7x7 km ²												ı							
Feng Yun 3D GAS (CMA)	• •	7 pts	10 km (d)																			
GaoFen-5 GMI	• •	5-9 pts	10 km (d)																			
GOSAT-2 TANSO-FTS (JAXA-MOE-NIES)	• •	5 pts	10.5 km (d)																			
OCO-3 (NASA)	•	11 km	4 km ²																			
Bluefield Technologies	• :	25x20 km	0.0004 km²																			
MicroCarb (CNES)	•	13.5 km	40 km ²																			
MethaneSAT (EDF)	•	200 km	1 km²																			
MetOp Sentinel-5 series (Copernicus)	•	2670 km	7x7 km ²																			
Feng Yun 3G (CMA)	• •	100 km	< 3 km ²																			
GEOCARB (NASA)	• •	2800 km	4x4 km ²																			
MERLIN (DLR-CNES)	•	100 m	0.14 km (w)																			
TanSat-2 Constellation	• • :	3x100 km	1 2x2 km²																			
GOSAT-3 (JAXA-MOE-NIES)	• •	TBD	TBD																			
CO2 Sentinel (Copernicus)	• • :	3x250 km	1 2x2 km²																			
					Scien	ce			Oper	ationa	ı		Exten	ded M	lission		Pla	anned		Co	nside	red

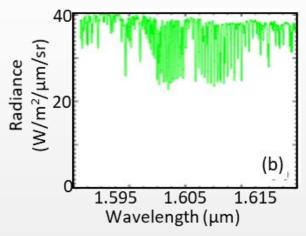
Recent Launches: GOSAT-2 Launch 29 October 2018

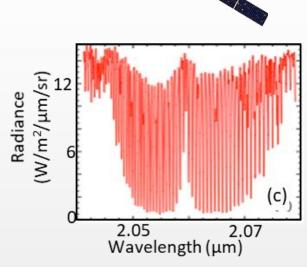


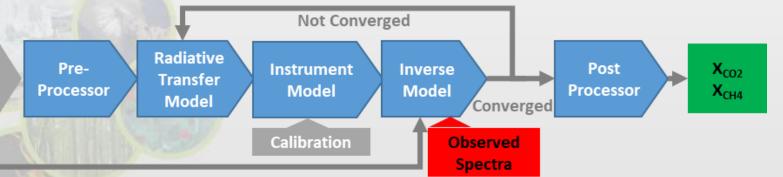
Coming Attractions: OCO-3 Launch, April 25, 2019








Retrieving XCO₂ and XCH₄ from Space-based Measurements



Gas, Aerosol and Surface Optical Properties

State Vector first guess

A priori Covariance

Tools Needed to Meet New Requirements

- Sensors with improved precision, spatial resolution, and coverage
 - Accuracy/Precision: Improved calibration accuracy and stability
 - Resolution/Coverage: Dedicated LEO and Geo GHG constellations
- Improved remote sensing retrieval algorithms
 - Optical properties: gas absorption and aerosol scattering
 - Retrieval methods: Optimized to exploit information from solar spectra
- Better coordination with ground-based/aircraft networks
 - Validation: TCCON, EM27-Sun, AirCore, Aircraft
 - Complementary coverage: polar regions, persistently cloud regions
- Improved atmospheric inversion models
 - Transport: Higher spatial resolution to resolve mesoscale transport
 - Assimilation techniques: for ground-, aircraft-, and space-based data
- Methods to validate fluxes on local to national/regional scales

Calibration Advances Needed

- Space based sensors for CO₂ and CH₄ must be
 - calibrated to unprecedented levels of accuracy to detect and quantify the small XCO₂ and XCH₄ changes associated with surface fluxes
 - cross-calibrated against internationally-accepted standards prior to launch and in orbit so that their measurements can be integrated into a harmonized data product that meets the accuracy, precision, resolution, and coverage requirements for CO₂ and CH₄
- Efforts by the ACOS and GHG-CCI teams have demonstrated the feasibility of this approach for SCIAMACHY, GOSAT, and OCO-2
 - Rigorous pre-launch and in-orbit calibration methods demonstrated
- Substantial improvements will be needed to meet the much more demanding requirements of anthropogenic emissions monitoring
 - Cross-calibrating a more diverse range of spacecraft sensors
 - Reducing calibration-related biases across multiple spacecraft

Validation Advances Needed

XCO₂ and XCH₄ estimates across the constellation must be cross validated against internationally-recognized standards to yield a harmonized integrated product that meets the demanding precision, accuracy, resolution, and coverage requirements

- The Total Carbon Column Observing Network (TCCON) currently serves a critical transfer standard between the space based measurements and the *in situ* standard maintained by WMO GAW
- TCCON must be maintained and expanded meet the much greater demands of anthropogenic emissions monitoring on national scales
 - Biases must be reduced by a factor of 5-10 from 0.25% on regional scales to < 0.025 to 0.05% to improve inventories
- Innovative validation methods must be developed to support the validation of emissions estimates on scales ranging from that of individual large power plants to that of a nation.

Proposed CEOS Actions

- Link the atmospheric GHG measurement and modeling communities and stakeholders in the national inventory and policy communities (through UNFCCC/SBSTA), to refine requirements;
- 2. Exploit the capabilities of the CEOS and CGMS member agencies and the WMO Integrated Global Greenhouse Gas Information System (IG³IS) to integrate surface and airborne measurements of CO₂ and CH₄ with those from available and planned space-based sensors to develop a prototype, global atmospheric CO₂ and CH₄ flux product in time to support inventory builders in their development of GHG emission inventories for the 2023 global stocktake; and
- 3. Use the lessons learned from this prototype product to facilitate the implementation of a complete, operational, space-based constellation architecture with the capabilities needed to quantify atmospheric CO₂ and CH₄ concentrations that can serve as a complementary system for estimating NDCs in time to support the 2028 global stocktake.

Endorsement and Next Steps

- The 2018 CEOS Plenary endorsed the AC-VC GHG White Paper
 - The Plenary confirmed CEOS interest in continuing collaboration with CGMS through a specific task in WGClimate on GHG monitoring, with dedicated resources and activities based on the mapping table of the actions identified in the Way Forward chapter of the report
 - The 3-point plan and activities are interpreted as recommendations to the CEOS Agencies
 - Plenary also endorsed the revision of the Terms of Reference of the WGClimate to accommodate these changes
 - AC-VC will support GHG constellation development and synergistic GHG and atmospheric composition observations and modelling efforts
 - WGCV will support the definition of the calibration and validation needs
 - The CEOS SIT Chair encouraged the publication of the white paper to facilitate citations and efforts to build on its content
 - WMO and Copernicus have agreed to jointly publish the white paper
 - Publication date ~June 2019

Interaction with WGCV

Work with WGCV and GSICS to define cal/val needs (Rec#9)

- Identify available standards and techniques that can be used to cross-calibrate space based sensors prior to launch and on orbit (lunar, solar, vicarious)
 - Level-1: cross-calibration, common radiometric standards, vicarious calibration, ...
- Identify available standards and techniques that can be used to cross-validate space based estimates (TCCON, AirCore ...)
 (Rec#11)
 - Level-2: cross-calibration, (fiducial) reference measurements, ...
- Discuss possible role of an active mission as flying standard in a GHG constellation (Rec#14)
- Surface flux products: validation approaches and reference estimates

Progress with Interfaces in the GHG Communities

- The White Paper proposes to link atmospheric GHG measurement and modelling communities with stakeholders in national inventory and policy communities to refine requirements
- Existing scientific conferences and workshops are being exploited to encourage interactions among these groups
 - 17-20 Sept 2018: IG³IS/TRANSCOM Ground and space-based measurement, flux modeling, and gridded inventory communities
 - 26-29 Nov 2018: ESA ATMOS Current/future Space based measurements
 - 10-14 Dec 2018: AGU Ground and space-based measurement, flux modeling, and gridded inventory communities
 - 4-8 March: GSICS Calibration and operational satellite communities
 - 12-14 March: CHE/VERIFY Ground and space-based measurement, flux modeling, gridded inventory and national (bottom-up) inventory communities
 - 25-29 March: CEOS WGCV IVOS 31 CEOS WGCV community
- Principal Challenge Interface with national inventory community

Near Future Meetings

- 34th CEOS Strategic Implementation Team Meeting (CEOS SIT-34)
 - o Miami Florida, 2-4 April 2019
- 15th International Workshop on Greenhouse Gas Measurements from Space (IWGGMS-15)
 - Hokkaido University, Sapporo, Hokkaido, Japan on 3-5 June.
 - The meeting announcement, registration, and abstract submission page here: https://www.nies.go.jp/soc/en/events/iwggms15/
 - Abstracts are due on 1 April
- CEOS WGClimate/WGCV/AC-VC Roadmapping Meeting,
 - JAXA HQ, Tokyo, Japan, (Sunday) 9 June
- CEOS AC-VC Annual meeting
 - Nakano Sunplaza, Tokyo, Japan, 10-12 June
 - Webpage is posted here: http://ceos.org/meetings/ac-vc-15/
 - The registration closes on May 3
 - We are still compiling the agenda, but the current plan is to focus on greenhouse gases on Monday, 10 June and air quality on 11-12.