CEOS WGCV IVOS 31, Perth "TIMELINE"AVHRR Re-Processing

DLR German Aerospace Center EOC Earth Observation Center & OS Optical Sensor Systems

<u>M. Bachmann</u>, S. Asam, C. Frey, I. Klein, C. Eisfelder, S. Plank, L. Klüser et al. DLR-EOC

Wissen für Morgen

martin.bachmann@dlr.de

AVHRR L1B Data volume @ DLR's DIMS archive (by Jan. 2019)

```
    – HRPT-Data for Europe & North Africa (a) 1 km nadir GSD
    – ~174.000 L1B Products ~70 TByte
```

```
– GAC-Data global @ 4 km nadir GSD
– ~289.000 L1B Products
```

ts ~25 TByte

TIMELINE Products

In Orbit-Geometry (Level-1b & Level- 2)	Gridded composites (Level-3)
Top-of-Atmosphere Reflectances	
Cloud mask, Cloud products	Cloud products
Water mask	
BOA Reflectances, incl. BRDF correction	
Snow & Ice	Snow & Ice
Hot Spot	Hot Spot
	Burnt Area
Albedo	Albedo
Land Surface Temperature	Land Surface Temperature
NDVI	NDVI
	FAPAR
	LAI

TIMELINE Products

In Orbit-Geometry (Level-1b & Level- 2)	Gridded composites (Level-3)
Top-of-Atmosphere Reflectances	
Cloud mask, Cloud products	Cloud products
Water mask	
BOA Reflectances, incl. BRDF correction	
Snow & Ice	Snow & Ice
Hot Spot	Hot Spot
	Burnt Area
Albedo	Albedo
Land Surface Temperature	Land Surface Temperature
NDVI	NDVI
	FAPAR
	LAI

Translation of objectives into requirements

Challenges & Improvements

- Multiple sensors with slightly different SRFs
 - Spectral normalization (empirical model using HYPERION data)
- (Slight) inconsistency in radiometry when using NOAA OSPO calibration factors
 - Radiometric harmonization using PICs sites
- Drifting orbits

> BRDF correction, parametrization from data using ± 1 months window

• Errors and "noise" in data

> Provision of data quality measures and typical uncertainties

Challenges & Improvements

- Multiple sensors with slightly different SRFs
 - Spectral normalization (empirical model using HYPERION data)
- (Slight) inconsistency in radiometry when using NOAA OSPO calibration
 - Radiometric harmonization using PICs sites
- Drifting orbits

> BRDF correction, parametrization from data using ± 1 months windo

Errors and "noise" in data
 Provision of data quality measures and typical uncertainties

Spectral normalization

Hyperspectral database:

- 10 HYPERION 1GsT products (TOA-rad and BOA-ref (ATCOR))

- data from Greenland to North Africa
- diversity in biomes and land cover classes
- diversity in seasonality

Advantages:

- over 11 mio. spectral samples
- well-known stability (VNIR shifts <1.5 nm, GREEN et al., 2003)
- uncertainty in L2 & L3 products resulting from spectral stability can be estimated
- Approach similar to STEVEN et al., 2003, 2007
- Least-square fitting to reference sensor (NOAA 19), linear model (polynominal & sigmoid tested)

Spectral normalization

Approach similar to STEVEN et al., 2003, 2007

- Least-square fitting to reference sensor (NOAA 19)
- Exclude critical bands & pixels (well-known HYPERION defects)
- Resample from ~11 to 5 nm FWHM, convolve to AVHRR pre-launch SRF

– Results:

- Linear model sufficient (polynomial & sigmoid also tested)
- Residual error is non-Gaussian
- Statistical dependency between residual error and NDVI, weak for AVHRR band 1 (Pearson R² ~0.2), not negligible for AVHRR band 2 (R² ~0.5)
- Splitting of samples into NDVI classes before regression shows only marginal improvement
- SWINNEN & VEROUSTRAETE (2008) describe these errors as regionally variable and depending on biomass,
 - i.e., BRDF effects

Spectral normalization

Approach similar to STEVEN Depicted:

- Least-square fitting to refe⁻ scatter plot of channel 2,
- Exclude critical bands & pix NOAA-14 Vs. NOAA-19
- Resample from ~11 to 5 nm- for clarity: 1.4 Mio out of 11 Mio data samples

– Results:

- Linear model sufficier black dots: uncorrected
- Residual error is non-(
- Statistical dependence black line: linear regression model (offset: -0.094; gain: 0.963)
 AVHRR band 2 (R² ~0. red dots: linear correction applied
- Splitting of samples ir green dots: 3rd order polynomial fit applied only marginal improve

Harmonization workflow

– For Lybia4:

- 1. TOA-Tech. Albedo => TOA-Rad => BOA-Ref
- 2. TAC atm. correction using standard atmosphere (AOD climatology), dev. in cooperation with Brockmann
- 3. Correction for spectral response functions, normalization to NOAA19
- 4. Generation of time series, excluding erroneous & cloudy data
- 5. Correction for BRDF
 - a) Snyder Parameters as provided by Patrice Henry => thank you for your support !
 - b) Roujean fitted from AVHRR data
- 6. Generation of harmonization factors based on BOA-Ref time series
- 7. Convertion of harmonization factors back to TOA-Rad

– Check for validity by applying harmonization factors to Algeria3, La Crau & Demmin time series

Harmonization database

- L1B processor "bypass" in order to derive
 - small image subsets (~15² to ~100² pixels) over CEOS sites Algeria3, Lybia4, La Crau, Demmin
 - data calibrated to NOAA OSPO, in units of "technical albedo"
 - all metadata from hrpt file available (instrument temperatures, deep space readings etc.)
 - all bands, Lat/Lon grids, view & sun grids, plus cloud masks available

ch1_ramp_cal.ascii	ch2_space.bin	ch3_space.hdr	ch4_space.bin	ch5_ramp_cal.ascii	ch5_target.hdr	sitedata_algeria3	sitedata_lacrau
ch1_space.bin	ch2_space.hdr	ch3_target.bin	ch4_space.hdr	ch5_space.bin	Min_Max_Stats.txt	<pre>sitedata_algeria3.hdr</pre>	<pre>sitedata_lacrau.hdr</pre>
ch1_space.hdr	ch3_ramp_cal.ascii	ch3_target.hdr	ch4_target.bin	ch5_space.hdr	prt.bin	sitedata_demmin	terascanlog.log
ch2_ramp_cal.ascii	ch3_space.bin	ch4_ramp_cal.ascii	ch4_target.hdr	ch5_target.bin	prt.hdr	sitedata_demmin.hdr	

- Number of tiles:
 - La Crau: 12.107 datasets
 - Lybia4: 11.635
 - Algeria3: 13.305
 - Demmin: 11.207
- Generation of database (IDL .sav & .csv) for each site
 - Structure:

Date	Platform	Sat zenith	Sat azi.	Sun zenith	Sun azi.	Mean Band 1	Mean Band 2	Mean Band 3	Mean Band 3a	Mean Band 4	Mean Band 5	Stdev Band 1	Stdev Band 2	Stdev Band 3	Stdev Band 3a	Stdev Band 4	Stdev Band 5
4	DLR																

Current status

Processing:

- L1B: done
- L2A Atm. Correction: done for 1988-2014
- L2A BRDF (fitted from the data): in progress

Harmonization factors:

• 1st set of factors derived, validation ongoing (waiting for L2A processing to be finished)

Upcoming:

- 1st batch of thematic products: cloud products using APOLLO NG, snow mask, water mask, NDVI
- Re-processing of L1B when improved TIR calibration from FIDUCEO will be made available

Wissen für Morgen

FireBird sensors on TET-1 & BIROS Satellites

<u>C.Fischer@dlr.de</u> DLR-OS <u>Doris.Klein@dlr.de</u>, <u>Martin.Bachmann@dlr.de</u> DLR-DFD

FireBird Instrument Design

DLR

	3 line-Camera (3 line FPA)	2 Infrared- Cameras
Wave length	460 - 560 nm 565 - 725 nm 790 - 930 nm	MWIR: 3,4 - 4,2 μm LWIR: 8,5-9,3 μm
Focal length	90,9 mm	46,39 mm
FOV	19,6°	19°
F-Number	3,8	2,0
Detector	CCD- Zeile	CdHgTe Arrays
Detector cooling	Passive, 20 ° C	Stirling, 80 - 100 K
Pixel size	7 μm x 7 μm	30 µm x 30 µm
Number of Pixel	3 x 5164	2 x 512 staggered
Quantization	14 bit	14 bit
Ground Resolution	42,4 m	356 m
GSD	42,4 m	178 m
Swath width	211 km km	178 km
Data rate	max 44 MBit/	0,35 MBit/s
Accuracy	100m on ground	100m on ground

In orbit since 2012 / 2016

Products

Fire Radiative Power (MW)