

S3 SLSTR Post Launch Vicarious Calibration Dave Smith – SLSTR Calibration Scientist Mireya Etxaluze, Ed Polehampton RAL Space, Science and Technologies Facilities Council, United Kingdom

Sentinel-3 Series

2016 – Sentinel 3A

2018 – Sentinel 3B

2021 – Sentinel 3C

- Spectral Calibration in progress
- Instrument Calibration
 Spring 2019

2023 – Sentinel-3D

Launched 16-Feb-2016 C Launched 25-Apr-2018 C

....

Sea and Land Surface Temperature Radiometer

Nadir swath	>74°	(1400km swath)		
Dual view swath	49°	(750 km)		
Two telescopes	Φ110 mr	n / 800mm focal length		
Spectral bands	al bands TIR:3.74 SWIR:1.38 VIS: 555nm			
Spatial Resolution	1km at nadir for TIR, 0.5km VIS/SWIR			
Radiometric quality	NEΔT 30 mK (LWIR) – 50mK (MWIR) SNR 20 for VIS - SWIR			
Radiometric accuracy	0.2K for 2% for S	IR channels olar channels relative to		

Science & Technology Facilities Council Rutherford Appleton Laboratory

* *

SLSTR-B Known Issues

The following issues are under formal investigation by ESA supported by Industrial team and RAL

- VIS/SWIR Calibration significant differences in some bands between pre/post launch and SLSTR-A/B - NC-ESA-COM-00037
- \$ S1(555nm)/S2(669nm) noise in VISCAL signals leading to 2-3% apparent gain variation. NC-ESA-COM-00038
- S7/S8 Co-Registration apparent (130m shift) NC-ESA-COM-00039
 - ✓ Similar to effect seen on S3A (250m shift)
 - ✓ Thought to be related to timing within detection chain

SLSTR-B Summary of CNES Vicarious Calibration Results

Results from Desert Sites

NC-ESA-COM-00037

- S1-S3 Nadir Are consistent with S2A-MSI, S3A-OLCI, S3A-SLSTR MERIS, AATSR
- S5 and S6 Consistency with SLSTR-A but not AATSR, MODIS-A, L8-OLI or S2

Discrepancies in S6 between desert and sunglint methods.

Science & Technology Facilities Council

Results from Yves Govaerts

• Radiative transfer modelling of the Libya-4 site performed by Yves Govaerts has produced a different result for S6 which is more in line with S5.

MEAN RELATIVE DIFF.											
BAND 0.44μm 0.55μm 0.66μm 0.84μm 1.62μm											
MODISA	-0.76%	-0.24%	-0.89%	-0.92%	-1.05%	-0.59%					
MERIS	+ 0.07%	+ 1.13%	+ 0.04%	-0.06%							
S2A_MSI	+ 0.67%	+ 0.66%	+ 0.83%	+ 0.16%	-1.84%	-2.87%					
L8_OLI	-1.91%	+ 0.49%	+ 0.11%	+ 0.29%	-2.56%	-2.67%					
S3A_SLSTR		+ 4.17%	+ 2.21%	+ 1.29%	-11.14%	-11.12%					
S	TANDAR	D DEVIA	TION OF	RELATIV	'E DIFF.						
MODISA	+ 2.60%	+ 1.43%	+ 1.23%	+ 1.25%	+ 1.06%	+ 1.89%					
MERIS	+ 2.65%	+ 1.66%	+ 1.40%	+ 1.26%							
S2A_MSI	+ 2.49%	+ 1.42%	+ 1.29%	+ 2.19%	+ 1.29%	+ 2.11%					
L8_OLI	+ 2.38%	+ 1.29%	+ 1.20%	+ 1.37%	+ 1.43%	+ 1.97%					
S3A_SLSTR		+ 1.83%	+ 1.44%	+ 1.44%	+ 1.17%	+ 1.57%					

SLSTR VIS/SWIR Calibration – March 2018

		Comparisons ov	Sun	glint		
Channel	SLSTR-A/OLCI-A SLS		SLSTR-A/MODIS-A SLSTR-A		SLSTR	SLSTR
	(Nadir Only)	(Nadir Only)	(Nadir)	(Oblique)	(Nadir)	(Oblique)
S1	1.003 (0.005)	1.024 (0.009)	0.969 (0.019) 0.9926 (0.023)			
S2	1.000 (0.004)	1.034 (0.007)	0.998 (0.012) 1.024 (0.010)			
S3	0.990 (0.005)	1.036 (0.008)	0.989 (0.010) 1.031 (0.009)			
S5a		0.887 (0.006)	0.880 (0.007) 0.952 (0.006)		0.879 (0.027)	0.845 (0.027)
S5b		0.887 (0.006)	0.880 (0.007) 0.953 (0.006)			
S6a		0.808 (0.010)			0.762 (0.030)	0.738 (0.030)
S6b		0.808 (0.010)				

* Numbers in brackets are standard deviations - not full combined uncertainty

ACRI COSO EUMETSAT

Vicarious Calibration Approach

- Analysis using PICS sites
- L1 images over desert, ice, sunglint are processed using S3ETRAC tool and TOA reflectances + ancillary information are saved to Netcdf files.
 - Avoids the need for downloading large volumes of data,
 - Approach was developed and used successfully for AATSR
 - Tool developed by ACRI-ST based on specifications from CNES and RAL
- Extractions allow comparisons with other sensors
- Directly as in the case of SLSTR and OLCI/AATSR and MERIS
- Indirectly where satellites are not time coincident using matching geometry
 - E.g. AATSR/MERIS vs MODIS

Rutherford Appleton Laboratory

• E.g. AATSR vs ATSR-2 vs ATSR-1

Geometric Comparisons

Spectral Comparisons

Desert sites are The earth is not spectrally flat!

- Affects band-band comparisons and inter-satellite comparisons
- Spectral differences are due to surface BRDF + atmospheric conditions

Spectral Band Comparisons

S2

660

S5

1600

ACRI COSO EUMETSAT

1650

680

700

* *

At 2.25um Methane is a significant absorber!

Impact of Methane on S6

RTM code – such as MODTRAN and 6S use hard coded values of CH4 MODTRAN = 1600ppb Current values = 1860ppb and increasing SLSTR 2.25um comparisons vs. MODIS 2.13 comparisons

No CH4 SLSTR/MODIS = 0.78

With CH4 – Defualt values SLSTR/MODIS = 0.86

With CH4 – 2018 values SLSTR/MODIS ~ 0.88

SLSTR-A vs AATSR (Nadir View)

Geometric matching is used to despite different overpass times. Assume same spectral profile

Combined results for all desert sites processed to date

Match-ups constrained to VZA <25 degrees (AATSR < 22degrees)

SWIR A and B stripes show excellent agreement – mean difference < 0.1%

R/R _{raf}	1.1 1.0 Average = 0.8820 0.9 Set Day = 0.0072		Average R/R _{ref}	Stddev
	0.9 Example = 1419 0.8 Example = 1419 Jan-16 May-16 Sep-16 Jan-17 May-17 Sep-17 Jan-18 May-18 Sep-18 Jan-19	S 1	0.974	0.019
	1.2	S2	1.006	0.013
R/R_{rot}	1.0 Average = 0.6829 0.9 Est Day = 0.0072	S 3	0.992	0.012
	$\begin{array}{c} 0.0 \text{ BOR } = 0.0010 \text{ Border } = 0.00100 $	S5a	0.882	0.008
ALL A	Science & Technology Facilities Council Rutherford Appleton Laboratory	S5b	0.882	0.008
© F	AL Space S3MPC – 2017			

SLSTR-B vs AATSR (Nadir View)

Geometric matching is used to despite different overpass times. Assume same spectral profile

Combined results for all desert sites processed to date

Match-ups constrained to VZA <25 degrees (AATSR < 22degrees)

SWIR A and B stripes show excellent agreement – mean difference < 0.4%

1.2 1.1 1.0 Average = 0.8747 0.0 Everage = 0.000		Average R/R _{ref}	Stddev
0.9 180 1	S1	0.997	0.027
1610nm (B stripe) 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	S2	1.018	0.016
1.0 Average = 0.8790 0.9 Std Dev = 0.0123	S3	0.997	0.017
Nsample = 180 1	S5a	0.875	0.011
science & Technology Facilities Council Rutherford Appleton Laboratory	S5b	0.879	0.012

SLSTR-A vs AATSR (Oblique View)

Geometric matching is used to despite different overpass times. Assume same spectral profile

Combined results for all desert sites processed to date

SWIR A and B stripes show excellent agreement – mean difference < 0.1%

R _{ref}	1.2 1610nm (A stripe) 1.2 4 Average = 0.9552 52 1.1 5xd Dev = 0.0071 1.2 6Nsample = 889		Average R/R _{ref}	Stddev
R/I		S1	1.013	0.013
	^{1.2} Apr-16 Jul-16 Oct-16 Jan-17 Apr-17 Jul-17 Oct-17 Jan-18 Apr-18 Jul-18 Oct-18 1.2 1610nm (B stripe)	S2	1.028	0.012
$ R_{ref} $	1.1 Average = 0.9561 Std Dev = 0.0071 1.0 Nsample = 889	S 3	1.033	0.011
æ	0.9 0.8 or 16 hul 16 Oct 16 log 17 Apr 17 hul 17 Oct 17 log 18 Apr 18 hul 18 Oct 18	S5a	0.955	0.007
ALA	Science & Technology Facilities Council Rutherford Appleton Laboratory	S5b	0.956	0.007

🕻 ACRI 🜔 esa 🥐 eumetsat

SLSTR-A vs OLCI-A

Combined results for all desert sites processed to date

Match-ups constrained to observations where nadir VZA <25 degrees

Corrections for spectral variations, atmosphere + site spectral profile are applied

	Average R/R _{ref}	Stddev
S1	1.003	0.008
S2	1.001	0.006
S3	0.990	0.007

science & Technology Facilities Council Rutherford Appleton Laboratory

ACRI COSA EUMETSAT

SLSTR-B vs OLCI-B

Combined results for all desert sites processed to date

Match-ups constrained to observations where nadir VZA <25 degrees

Corrections for spectral variations, atmosphere + site spectral profile are applied

	Average R/R _{ref}	Stddev
S1	1.036	0.019
S2	1.032	0.009
S 3	1.004	0.012

Science & Technology Facilities Council Rutherford Appleton Laboratory

SLSTR-A vs MODIS-Aqua

Data for Libya-4 only

Match-ups constrained to observations where nadir VZA <25 degrees

Geometric corrections and Corrections for spectral variations

	Average R/R _{ref}	Stddev
S2	1.025	0.0156
S3	1.034	0.0162
S5a	0.909	0.0113
S5b	0.909	0.0113
S6a	0.876	0.0153
S6b	0.876	0.0153

Default CH4 values used

Sun-Glint Calibration Model

- The Sun-glint model is based on Cox and Munk (1954) and accounts for:
 - Surface reflectance (white-cap, wind-roughened surface)
 - Rayleigh scattering
 - Atmosphere transmittance
- For AATSR and MODIS we have used ECMWF data for wind speed and Aerosol values from Aeronet
- All the inputs needed are in the SLSTR Level-1 data products, except aerosol optical depth!
- So for SLSTR we need to determine the visibility, aerosol size distribution, and wind velocity by constraining the model to S1, S2 and S3
 - We assume that the relative calibration error is <3% (based on desert analysis)

SLSTR vs Sunglint Model North Pacific 22/04/2017

Image from: <u>https://coda.eumetsat.int/#/home</u>

Product Name: S3A SL 1 RBT 20170422T185118 20170422T185418 20170422T205046 0179 017 013 2520 MAR O NR 002.SEN3

The best solution for this image is for the following conditions:

 τ_{aer} (0.55 µm)= 0.099 wind_x = -2.5 m/s (30% lower than wind_x provided in Level-1) wind y = -6.6 m/s (as provided in the Level-1 image) Sunglint coordinates: lat= 22.63 deg., long= -128.36 deg.

Comparisons against Sun-glint model

Mission

Note: S1-S3 are 'fixed' to determine wind speed and AOT

	Average Rel.Diff. (%)	Stddev
S5	0.942	0.036
S6	0.874	0.039

Oblique view scenes with sun-glint not available during winter months

© RAL Space | S3MPC – 2017

VTINEL 3

Mission Performance

1

SLSTR VIS/SWIR Calibration Status – Mar-2019

	Comparisons over Deserts						Sun	iglint	Libya4 (Goaverts)
Channel	SLSTR-A/OLCI-A	SLSTR-A/MODIS-A	SLSTR-/	A/AATSR	SLSTR-B/	/SLSTR-A*	SL	STR	SLSTR
	(Nadir Only)	(Nadir Only)	(Nadir)	(Oblique)	(Nadir)	(Oblique)	(Nadir)	(Oblique)	
S1	1.008 (0.014)	-	0.974 (0.019)	1.013 (0.025)	1.022 (0.027)	1.002 (0.008)			1.042 (0.018)
S2	1.004 (0.011)	1.011 (0.010)	1.006 (0.013)	1.028 (0.012)	1.005 (0.005)	1.000 (0.005)			1.022 (0.014)
S3	0.991 (0.010)	1.018 (0.010)	0.992 (0.012)	1.033 (0.011)	1.000 (0.017)	0.985 (0.005)			1.013 (0.014)
S5a		0.899 (0.006)	0.882 (0.012)	0.955 (0.007)	0.992 (0.017)	0.982 (0.003)	0.909 (0.031)	0.942 (0.036)	0.889 (0.012)
S5b		0.900 (0.006)	0.883 (0.008)	0.956 (0.007)	0.995 (0.015)	0.983 (0.003)			
S6a		0.876 (0.015)			0.995 (0.015)	1.007 (0.003)	0.845 (0.036)	0.874 (0.039)	0.889 (0.016)
S6b		0.876 (0.015)			0.995 (0.009)	1.016 (0.003)			

 SLSTR-B Data were generated from IPF-D where calibration files were not generated for all orbits – hence comparisons with SLSTR-A have more noise. Comparisons between SLSTR-A and B are for period after CMTR

ACRI COSA EUMETSAT

Comparisons depend on the calibration of the reference sensor

Sentinel-3 Tandem Phase

Sa_sl_1_rbt___20180911T093834_20180911T094134_20180912T145054_0179_035_307_2340_LN2_O_NT_003_SEN3

S3B_SL_1_RBT___20180911T093803_20180911T094103_20180912T134511_0179_012_307_2340_LN2_0_NT_003.SEN3

Sentinel-3A flying on Same Track 30s behind Sentinel-3B

SLSTR-A L3 Solar Channels

* *

ACRI COSO EUMETSAT

Data for 19-August-2018

SLSTR-B L3 Solar Channels

* *

ACRI COSO EUMETSAT

Data for 19-August-2018

S3B-S3A Tandem Phase Comparisons

S3B are aligned to first order with S3A based on comparisons over Desert sites
Residual differences most likely due to residual non-linearity errors
Note S1 and S2 affected by gain changes

ACRI COSO EUMETSAT

Science & Technology Facilities Council Rutherford Appleton Laboratory

Match ups are for 0.05degree cells filtered radiances in valid range

Comparisons are binned in 1% intervals

Error bars show standard deviation of comparisons

S1 Comparisons

S1

S3B-S3A Comparisons ±10% Trimming Applied

Science & Technology Facilities Counc

Rutherford Appleton

Conclusions

- VNIR channels show good agreement with OLCI, AATSR (within 3%) ©
- SWIR channels show significant difference compared with reference (12-15%)! 😕
- CH4 seems to account for discrepancy between different methods in 2.25um channel (Desert, Sunglint etc..)
- Root cause is under investigation issues with reference spectrometers, instrument geometric effects
- More effort needed on uncertainty estimates on Desert site analysis
- I.e. geometric, spectral differences of the surface reflectance any corrections are derived from indirect observations. Differences between methodologies...

• Sun-glint Analysis

- Useful for SWIR channels
- Uncertainty is dominated by knowledge of Aerosols and wind speed which is tied to calibration of VIS channels
- Tandem Phase gives near perfect conditions for cross-calibration
- Is being considered for Sentinel-3C
- On-going analysis to harmonize SLSTR-B with SLSTR-A