

Level 1 EO QA and Uncertainties

Emma Woolliams

QA4E Principle

"It is critical data and derived products are easily accessible in an open manner and have associated with them an indicator of their quality traceable to reference standards (preferably SI) to enable users to assess its suitability for their application i.e. its fitness for purpose."

Framework Heritage

Experience from previous projects provides basis for EDAP framework

Quality Assurance Evaluation

Details	Generation	Quality flags	Uncertainty Characterisation	Validation	Inter-comparison
uct Information	Input data and uncertainties	Quality Flags	Uncertainty Characterisation Method	Reference data representativeness	Scale of inter- comparison activities
uct Description	Sensor Calibration		Uncertainty sources included	Reference data uncertainty inclusion	Inter-comparison method
overage and Resolution	Algorithm method		Uncertainty values provided	Validation method	Product uncertainties inclusion
Data gaps	Algorithm tuning to reference data		Temporal stability	Validation results	Discrepancy between products identified and, if possible, resolved
a set limitations and target applications	Sensitivity analysis		Geolocation uncertainty		
ocumentation	Internal Processes		To understand	d whathar that	araduct produc

-> To understand whether the product producer provides **sufficient information** to allow a user to fully understand the status of the data product and to determine if **best practices** are being followed in generating the product

Evolved from

Pro

Proc

Dat

Г

Traceability Chain

Key

Basic

Good

Excellent

Intermediate

EDAP Framework Principles

- Should describe high-level principles and activities common for assessment of all EO missions.
- Starting point is to describe the "ideal" case for a given category aspiration which may not often be met.
- Grading based on mission fitness for purpose based on stated performance and application area.
- Assessment itself is the "ideal" case. Some aspects of assessment may be out of scope within EDAP.

Quality Assessment Matrix

Product Details	Product Generation	Product Flags	Uncertainty Characterisation	Validation
Product Information	Sensor Calibration & Characterisation Pre-Flight	Product Flags	Uncertainty Characterisation Method	Reference Data Representativeness
Product Availability & Accessibility	Sensor Calibration & Characterisation Post-Launch		Uncertainty Sources Included	Reference Data Quality
Product Format	Retrieval Algorithm Method	If target mission	Uncertainty Values Provided	Validation Method
Product Documentation	Retrieval Algorithm Tuning	data product is Level 2	Geolocation Uncertainty	Validation Results
Product Metrological Traceability - Documentation	Internal Processes			

Кеу
Not Assessed
Not Assessable
Basic
Intermediate
Good
Excellent

Quality Assessment Guidelines document then provides criteria for how to grade each category

Grading Criteria Example: Sensor Calibration Pre-flight

Grade	Criteria
Not Assessed	Assessment outside of the scope of study.
Not Assessable	Pre-flight calibration & characterisation not documented or information not available.
Basic	Pre-flight calibration & characterisation misses some important aspects of instrument behaviour and/or is not entirely of a level of quality to be judged fit for purpose.
Intermediate	Pre-flight calibration & characterisation covers most important aspects of instrument behaviour at a level of quality to be judged fit for purpose.
Good	Pre-flight calibration & characterisation covers all reasonable aspects of instrument behaviour to a quality that is "fit for purpose" in terms of the mission's stated performance. Calibration traceable to SI or community reference, characterisation meets good practice.
Excellent	As <i>Good</i> , additionally calibration and characterisation includes the measurements needed to assess uncertainties at component level and their impact on the final product.

Grading Criteria Example: Uncertainty Characterisation Method

Grade	Criteria
Not Assessed	Assessment outside the scope of study.
Not Assessable	Uncertainty characterisation not performed or method not documented.
Basic	Uncertainty established by limited comparison to measurements by other sensor/s Not by independent assessment and then comparison.
Intermediate	Limited use of GUM approach, and/or, an expanded comparison to measurements by other sensors.
Good	GUM approach to estimate measurement uncertainty with full breakdown of components and separated as Type A or B classification.
Excellent	GUM approach to estimate measurement uncertainty, including a treatment of error-covariance.

The Measurement Function

• The measurement function converts the observed quantities into the measurand

$$L_E = a_0 + \frac{a_1 L_T - a_2 C_T^2}{C_T} C_E + a_2 C_E^2 + 0$$

(AVHRR like example)

 Note that in FIDUCEO we try and ensure that we understand the uncertainties associated with each term but also have a physically based understanding of all components of the equation

The Measurement Function

The Measurement Function

$$\underbrace{L_{\rm E} = a_0 + \frac{a_1 L_{\rm T} - a_2 C_{\rm T}^2}{C_{\rm T}} C_{\rm E} + a_2 C_{\rm E}^2 + 0}$$

Capture in an effects table

Table descriptor		Value / Expression	How this is provided	Notes
Name of effect				
Affected term in meas	surement function			
	within scanline [pixels]			
Correlation type and	from scanline to scanline [scanlines]	Correlatio • Random	on forms:	
form	between orbits [orbits]	Systemat	ic / Rectan	gular
	Across time [e.g. days, months, years]	absolute • Triangula	r (simple a	verage)
	within scanline [pixels]	n angula		verage)
Correlation scale	from scanline to scanline [scanlines]	 Bell shap and othe 	ed (weight r effects)	ed average
	between orbits [orbits]	 Repeating shaped (d) 	g rectangu orbital effe	lar/bell cts)
	Across time			,
Channels / bands	List channels and bands affected			
	Correlation matrix			
	PDF shape			
Uncertainty	Uncertainty units			
	Uncertainty magnitude			

Sensitivity Coefficient

F<u>duceo</u>

Match-ups

- Reference radiance, or sensor-to-sensor
- Many (150 million +)
- Correlated

Harmonisation

For all dual-sensor matchups in the full sensor series minimise

$$K_{i,j} - \left(\frac{L_i(\vec{X}_i, \vec{a}_i) - L_j(\vec{X}_j, \vec{a}_j)}{L_j(\vec{X}_j, \vec{a}_j)} \right)$$

where for the reference sensor

$$L_i(\vec{X}_i, \vec{a}_i) \equiv L_i$$

Calibration models

Calibration coefficients

Sensor state variables (i.e. Level-0 data)

Radiance measured by the reference sensor (i.e. Level-1 data)

Radiance difference expected due to differing spectral response

FIDUCEO develops a palette of optimisation methods

		ODR	EIV	m-ODR	m-EIV
Optimise	calibration parameters	yes	yes	yes	yes
	sensor state variables	yes	yes	-	-
Account	independent random errors	yes	yes	yes	yes
	common random errors	yes	yes	yes	yes
	structured random errors	-	yes	-	yes

FIDUCEO RV2, 12th October 2018, Brussels

Contents of harmonisation datasets

Besides calibration parameters the harmonisation output includes state-of-the-art information on uncertainty.

The uncertainty of calibration coefficients is characterised by an error variance-covariance matrix.

The error variance-covariance matrix is the key to transform the uncertainty of the calibration into an uncertainty of the calibrated radiance!

From the error variance-covariance matrix we can derive the error correlation matrix (see figure) which is more intuitive for explaining the concept.

L1 \rightarrow L2 processing often involves combining data from different spectral channels and sometimes involves combining data from different image pixels

National Physical Laboratory

Introducing $CURU^{T}C^{T}$

What is the covariance between the Earth radiance values in different spectral channels due to the uncertainty associated with the common effect in the internal calibration target temperature?

Introducing $CURU^{T}C^{T}$

An error in the temperature of the internal calibration target will affect all channels. But not equally

Introducing $CURU^{T}C^{T}$

$$V_{LE,T} = \begin{pmatrix} c_{LA,T} & 0 & 0 \\ 0 & c_{LB,T} & 0 \\ 0 & 0 & c_{LC,T} \end{pmatrix} \begin{pmatrix} u_T & 0 & 0 \\ 0 & u_T & 0 \\ 0 & 0 & u_T \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} u_T & 0 & 0 \\ 0 & u_T & 0 \\ 0 & 0 & u_T \end{pmatrix}^{\mathrm{T}} \begin{pmatrix} c_{LA,T} & 0 & 0 \\ 0 & c_{LB,T} & 0 \\ 0 & 0 & c_{LC,T} \end{pmatrix}^{\mathrm{T}}$$

$$Full \text{ correlation} \qquad c_{LA,T} = \frac{\partial L_{E,A}}{\partial L_{ICT,A}} \frac{\partial L_{ICT,A}}{\partial T}$$
Sensitivity coefficient to convert from temperature

different channels due to common temperature error

Temperature uncertainty in K The same throughout by definition

e to Earth radiance uncertainty

More $CURU^{\mathsf{T}}C^{\mathsf{T}}$

Bringing $CURU^{T}C^{T}$ together

What is the covariance between the Earth radiance values in different spectral channels due to the uncertainty associated with the common effect in the internal calibration target temperature and the uncertainty associated with the independent effect Earth Counts?

$$\boldsymbol{V}_{LE} = \sum_{\text{Effects, } i} \boldsymbol{C}_{i} \boldsymbol{U}_{i} \boldsymbol{R}_{i} \boldsymbol{U}_{i}^{\mathrm{T}} \boldsymbol{C}_{i}^{\mathrm{T}}$$

$$\boldsymbol{V}_{LE} = \boldsymbol{C}_{C_E} \boldsymbol{U}_{C_E} \boldsymbol{R}_{C_E} \boldsymbol{U}_{C_E}^{\mathrm{T}} \boldsymbol{C}_{E}^{\mathrm{T}} + \boldsymbol{C}_{T} \boldsymbol{U}_{T} \boldsymbol{R}_{T} \boldsymbol{U}_{T}^{\mathrm{T}} \boldsymbol{C}_{T}^{\mathrm{T}}$$

Acknowledgements and notices

- FIDUCEO has received funding from the European Union's Horizon 2020 Programme for Research and Innovation, under Grant Agreement no. 638822
- Prime: Reading University
- www.fiduceo.eu
- Note: FIDUCEO Workshop 25-27 June, Lisbon, Portugal

esa

- Earthnet Data Assessment Pilot
- Funded by the European Space Agency
- Prime: Telespazio