

Infrared and Visible Optical Sensors (IVOS) Subgroup to the Working Group on Calibration and Validation (WGCV)

On-orbit Performance of S-NPP and N-20 VIIRS

*X. Xiong*¹, *A. Angal*², *K. Chiang*², *N. Lei*², *Y. Li*², and *K. Twedt*² ¹NASA GSFC, Greenbelt, MD, USA ; ²SSAI, Lanham, MD, USA

CSIRO, Perth, Australia, 25-29 March, 2019

Outline

- On-orbit Calibration Methodologies
- Calibration Performance Assessments
 - Reflective Solar Bands (RSB)
 - Thermal Emissive Bands (TEB)
 - Day/Night Band (DNB) Stray Light Correction
- Challenges and Future Efforts

VIIRS On-orbit Calibration and Characterization

On-board Calibrators (OBC)

- 22 spectral bands: 0.4 to 12.2 μ m (RSB, TEB, DNB)
- M (1-16)/I (1-5)/DNB resolution: 750/375/750 m
- Dual gain bands: M1-5, M7, M13
- DNB: 3 gain stages (H/M/L)

- Track RSB calibration stability
- Regularly scheduled at the same phase angles (S/C roll maneuvers; different aggregation zones for S-NPP and N-20)
- N-20 and S-NPP lunar observations are made ~50 min apart

N-20 VIIRS Lunar Images (3/17/19)

11

12

S-NPP VIIRS Lunar Images (3/17/19)

Scans \rightarrow

Scans →

Spectral Band Responses: RSB

- S-NPP: large changes in NIR/SWIR wavelengths
- N-20: extremely stable for VIS/NIR/SWIR

S-NPP VIS, NIR, and SWIR Responses

N-20 VIS, NIR, and SWIR Responses

On-orbit Modulated RSR for S-NPP VIIRS

SD On-orbit Degradation

- SD degradation as a function of wavelength: larger at shorter wavelengths
 - VIIRS has no SD door; Terra MODIS SD door fixed at "open" at L+2.5 yr.
- SD degradation as a function of solar exposure time: S-NPP is more closer to T-MODIS and N-20 is more closer to A-MODIS

Spectral Band Responses: TEB

- Both S-NPP and N-20 TEB responses have been very stable
- N-20: initial ice buildup on the LWIR dewar window was removed with a mid-mission outgassing (MMOG) performed on 03/12/19

On-board BB Stability

- On-board BB is nominally controlled at 292.5 K
- T_BB long-term stability has been maintained to within a few mK
- T_BB short-term stability and uniformity: 10 30 mK (more stable in night orbits)

Noise Characterization: RSB SNR & TEB NEdT

VIIRS Day Night Band

DNB Stray Light – Before Correction

S-NPP: 08:35:00, 07/13/18 (N. America) N-20: 07:44:45, 07/13/18 (N. America)

S-NPP: 22:06:59, 07/13/18 (Europe) N-20: 22:58:11, 07/13/18 (Europe)

DNB Stray Light – After Correction

S-NPP: 08:35:00, 07/13/18 (N. America) N-20: 07:44:45, 07/13/18 (N. America)

S-NPP: 22:06:59, 07/13/18 (Europe) N-20: 22:58:11, 07/13/18 (Europe)

Band-to-Band Registration (BBR)

- BBR (characterized using lunar observations)
- Stable for both S-NPP and N-20 in along-scan and along-track directions.

11		- 19	P
12			P
M1	6	6	e
M2		()	

Challenges and Future Efforts

Altitude anomaly (2019-02-24)

- S-NPP VIIRS reported an attitude anomaly on 2019-02-24, 21:16-21:26 UTC
- About a 1% drop in the SD signal during the SDSM calibration after 2019-02-25
- The anomaly affects the SD view signal but not the Sun view signal

Challenges and Future Efforts

- Calibration consistency between S-NPP and N-20 VIIRS
 - Noticeable calibration differences for the reflective solar bands
 - More efforts for better understanding and development of mitigation strategies (NASA and NOAA)
- Accuracy of SD degradation over time
 - Use of lunar time series (for all spectral bands)
- Potential changes in sensor response versus scan-angle (RVS)
 - Dedicated long-term effort to monitor EV data at different AOIs
 - Lessons from MODIS RVS characterization
- Joint effort to support data reprocessing
 - Calibration improvements
 - Use of consistent calibration LUTs

VIIRS and MODIS Spectral Bands

	0	()]
VIIRS Band	Spectral Range (um)	Nadir HSR (m)	MODIS Band(s)	Range	HSR	
DNB	0.500 - 0.900					1 DNB
M1	0.402 - 0.422	750	8	0.405 - 0.420	1000	HG/MG/LG
M2	0.436 - 0.454	750	9	0.438 - 0.448	1000	
M3 0.478 - 0.498	0 479 0 409	750	3 10	0.459 - 0.479	500	
	0.478 - 0.498			0.483 - 0.493	1000	
M4 0.545 - 0.5	0 545 - 0 565	750	4 or 12	0.545 - 0.565	500	
	0.040 0.000			0.546 - 0.556	1000	
I 1	0.600 - 0.680	375	1	0.620 - 0.670	250	
M5 0.662 - 0.68	0.662 - 0.682	750	13 or 14	0.662 - 0.672	1000	
ino	0.002 0.002	100		0.673 - 0.683	1000	14 RSB
M6	0.739 - 0.754	750	15	0.743 - 0.753	1000	(0.4-2.3 um)
12	0.846 - 0.885	375	2	0.841 - 0.876	250	(0.4-2.5 μm)
			16 or 2	0.862 - 0.877	1000	
M7	0.846 - 0.885	750	10 01 2	0.841 - 0.876	250	
M8	1.230 - 1.250	750	5	SAME	500	
M9	1.371 - 1.386	750	26	1.360 - 1.390	1000	
13	1.580 - 1.640	375	6	1.628 - 1.652	500	Dual Gain Bands:
M10	1.580 - 1.640	750	6	1.628 - 1.652	500	
M11	2.225 - 2.275	750	7	2.105 - 2.155	500	M1-M5, M7, M13
14	3.550 - 3.930	375	20	3.660 - 3.840	1000	
M12	3.660 - 3.840	750	20	SAME	1000	
M13 3.973 - 4.128			3.929 - 3.989	1000		
	3.973 - 4.128	/50	21 or 22	3.929 - 3.989	1000	
M14	8.400 - 8.700	750	29	SAME	1000	7 TEB
M15	10.263 - 11.263	750	31	10.780 - 11.280	1000	
15	10.500 - 12.400	375	31 or 32	10.780 - 11.280 11.770 - 12.270	1000 1000	
M16	11.538 - 12.488	750	32	11.770 - 12.270	1000	
	5					