

CURRENT FACILITIES (1)

- Absolute Radiometric Calibration Facility ARCF
 - Absolute BRDF measurements
 - Clean room facility (Class 100 / ISO 5)
 - Wavelength range from 210 nm to 2600 nm
 - Variable bandwidth monochromator or EKSPLA tuneable laser
 - Polarisation possible
 - Well-known uncertainty contributions
 - Accuracy as good as 0.5% (1σ)
 - B. Gür, G. Otter, R. Jansen, J. Groote-Schaarsberg, S. Brinkers, "The absolute radiometric calibration facility ARCF 2.0 at TNO", Proc. SPIE 9628, Optical Systems Design 2015: Optical Fabrication, Testing, and Metrology V, 96280O (24 September 2015); doi: 10.1117/12.2191595; https://doi.org/10.1117/12.2191595

CURRENT FACILITIES (2)

- Vacuum Calibration Facility VCF
 - Thermal Vacuum Chamber (1.5 m)
 - Cleanroom facility (Class 100 / ISO 5)
 - Radiometric calibration
 - Polarisation characterisation
 - Wavelength calibration
 - Slit-function characterisation
 - Stray light
 - Field of view
 - https://www.tno.nl/en/focus-areas/industry/roadmaps/space-scientific-instrumentation/earth-observation/space-instrument-calibration/

FUTURE FACILITY (1)

- "Calibration Space Instruments" CSI
 - Thermal Vacuum Chamber (2.5 3 m?)
 - Cleanroom facility (Class 100 / ISO 5)
 - Tip-tilt of instrument
 - Optical Stimuli (partially) in vacuum
 - Goal: 1 solar constant irradiance, 1 earth radiance
 - Tuneable laser, (xenon?) White Light Source
 - Traceability to SI

EARLY SKETCH OF POSSIBLE CONFIGURATION

FUTURE FACILITY (2)

- Status:
 - Funding secured
 - Kick-off was January 2018
 - Currently in definition phase:

Any features you'd like to have for your future calibration needs?

