

CEOS IVOS 30

EROS CalVal Landsat Update

Date: 2018/03/28-29

Presented By:

Cody Anderson¹, Ron Morfitt², Esad Micijevic¹, Obaidul Haque¹, Jim Storey¹, Mike Choate¹, Mark Lubke¹, Rajagopalan Rengarajan¹, Aparajithan Sampath¹

¹SGT contractor to USGS, ²USGS

cody.anderson.ctr@usgs.gov, Phone # 1 (605) 594-2787

Outline

Landsat 8 (OLI and TIRS)

- Radiometric Stability
- Geodetic Accuracy
- TIRS-OLI Alignment
- SSM Modeling
- Phase 4 GCP Status

Landsat 7 (ETM+)

- Radiometric Stability
- Geodetic Accuracy

Collection 1

- Landsat 5 and 4 TM No-PCD
- Landsat 5-1 MSS

Introduction

- USGS/EROS is responsible for the production and distribution of Landsat data (L1 – L5 MSS, L4 – L5 TM, L7 ETM+, and L8 OLI/TIRS).
- EROS CalVal are also involved in the development of Landsat 9.
- EROS CalVal is part of a larger calibration group including NASA/GSFC, NASA/JPL, Rochester Institute of Technology, South Dakota State University, and University of Arizona

L8 OLI Radiometric Stability

- Overall radiometric response models are a weighted average of the responses from 3 stim lamps, 2 solar diffusers, and lunar collects
- Decay in sensor responsivity over the lifetime indicated by all calibrators
- CA band ~1.2%: Blue band ~0.2%
- Very good agreement between calibrators
- Workings stim lamps (light blue) showing decay not correlated to other calibrators.
- Plan to remove this calibrator in future gain updates.

L8 OLI Radiometric Stability (Cont.)

- **Lunar collects show more** variability at longer wavelengths
- No modeled decay for these bands

L8 TIRS Gain Radiometric Stability

- Switch from side A to side B electronics due to scene select mirror current draw
- Side B shows better stability than side A
- Different ops con caused the different sampling rate seen in the side B plots.

Geodetic Accuracy by Quarter

GCP accuracy limits the ability to measure absolute geodetic accuracy.

TIRS-to-OLI Pitch Alignment vs. Date

A. Measure TIRS-to-OLI alignment using TIRS 10.8 mm and OLI SWIR1 bands

- 1. TIRS alignment changed as L8 maneuvered into the final orbit
- 2. Anomaly in September 2013 caused a step change
- 3. A safe-hold event in April 2014 had a smaller impact
- B. Reformulation of the yaw alignment to improve mode 0 data alignment did not impact roll or pitch alignment
- C. Side B pitch alignment has mostly been stable to within +/-10 mrad.
- D. A seasonal pitch variation in mode 0 data of ~8 mrad will be corrected in the Collection-2 CPFs.

SSM Model Prediction Accuracy

 Computed RMSE statistics as a function of time since mode switch for all events since Dec 2015

Results reflect performance when telemetry and calibration scene data are available when and where expected.

L8/S2 Registration Improvement Plan

- Perform global readjustment of the GLS control using L8 data with sparse ties to the Sentinel-2 Global Reference Image (GRI).
 - Six triangulation blocks are being used to perform this global readjustment.
- L8-only triangulations are complete for all blocks.
 - New OLI GCPs were also extracted for all blocks.
 - The adjusted control is available for testing but is not yet being used for product generation.
- When the S2 GRI L1C data become available, we will re-run the triangulation solution with MSI control added to a subset of scenes.
 - Some MSI control will be withheld to test the triangulation.
 - Validate using OLI-MSI image registration measurements.

L7 ETM+ Radiometric Stability

- ETM+ radiometric stability is monitored over PICS (here Libya 4)
- Longer wavelength bands show some seasonal variation
- The data don't show any significant trends, so the current radiometric model is performing well

L7 Geodetic Accuracy Characterization

Collection 1

- TM no-PCD and MSS are now in collection 1.
- TM no-PCD (Payload Correction Data)
 - Lifetime Look-Up-Tables (LUTs) of blackbody and shutter temperatures are used for thermal band processing
 - No-PCD scenes without DE (Definitive Ephemeris) will use TLEs (Two Line Elements)
 modeled from PCD scenes from the same time period

MSS

- Establish consistent calibration among different formats of MSS data
 - Update current radiance calibration
 - Transfer L8 OLI reflectance calibration to L1-5 MSS
- GCP Outlier Rejection Improvement
- Fill Scan Additions

TM no-PCD (LUTs)

- Plot shows the difference in TOA radiance over an area within path 38 and row 38 between TM no-PCD and standard TM collection1 data. Vertical lines corresponds to outgassing dates
- Difference is normally within 3% percent except for scenes acquired within a few days of outgassing events, where the difference is as high as 28%

MSS (Radiance Update)

GAIN	MSS-5	MSS-4	MSS-3	MSS-2	MSS-1
Green	0.791 ± 0.006	0.950 ± 0.007	1.003 ± 0.015	1.047 ± 0.021	0.978 ± 0.015
Red	0.912 ± 0.007	0.983 ± 0.007	1.039 ± 0.017	0.891 ± 0.006	0.823 ± 0.008
NIR-1	0.976 ± 0.009	1.018 ± 0.007	1.091 ± 0.016	0.911 ± 0.007	0.941 ± 0.010
NIR-2	0.968 ± 0.009	1.080 ± 0.008	1.013 ± 0.015	0.903 ± 0.006	1.007 ± 0.009
BIAS	MSS-5	MSS-4	MSS-3	MSS-2	MSS-1
BIAS Green	MSS-5 #	MSS-4 #	MSS-3 #	MSS-2 -15.62 ± 1.94	
Green	#	#	#	-15.62 ± 1.94	-17.30 ± 1.15

$$L_{\lambda,cal,corrected} = (L_{\lambda,cal}) \cdot Gain + Bias$$

Source: SDSU

Radiance Update (Comparison)

Sonora-Red Band (Corrected for Spectral Band differences)

Sonora-NIR2 Band (Corrected for Spectral Band differences)

Time

◆ L5B6 MSS

■L4B6 MSS

X L3B6 MSS

▲ L2B6 MSS

XL1B6 MSS

▲ L5B4_TM

MSS (Reflectance Calibration)

GAIN	MSS-5	MSS-4	MSS-3	MSS-2	MSS-1
Green	562.76 ± 2.98	562.10 ± 3.23	565.10 ± 7.64	571.32 ± 4.52	570.15 ± 6.09
Red	486.48 ± 2.85	485.47 ± 2.95	479.90 ± 6.89	479.63 ± 3.69	489.15 ± 5.47
NIR-1	390.46 ± 2.51	393.27 ± 2.26	402.10 ± 5.23	402.06 ± 3.11	405.67 ± 5.26
NIR-2	263.59 ± 1.90	267.22 ± 1.61	276.59 ± 3.59	275.14 ± 2.17	269.37 ± 2.94

$$\rho_{\lambda} = \frac{DN_{\lambda}}{Gain}$$

Source: SDSU

Reflectance (Comparison)

Sonora-Red Band (Corrected for Spectral Band differences)

Sonora-NIR2 Band (Corrected for Spectral Band differences)

◆ L5B7 MSS

L4B7 MSS

■L4B5 MSS

▲ L5B3_TM

◆ L5B6_MSS

L4B6 MSS

×L3B6_MSS

▲L2B6 MSS

XL1B6 MSS

▲ L5B4 TM

Pre-collection vs Collection 1

- Average percent change in TOA
 Radiance and Reflectance between
 pre-collection and collection 1
 products based on lifetime trend of
 an area over Sonora dessert.
 - Radiance space: Max ~7% in L1 MSS red and NIR1 band
 - Reflectance space: Max ~11% in L3 MSS red band
 - A positive difference indicates that collection 1 product will be darker compared to pre-collection product.

% Change in TOA Radiance					
	L5	L4	L3	L2	L1
Band	MSS	MSS	MSS	MSS	MSS
Green	1.73	-0.01	-1.55	0.87	-0.21
Red	0.14	-0.59	-6.06	4.37	6.96
NIR1	-1.25	1.47	-4.33	0.84	-7.01
NIR2	0.52	-0.90	1.08	6.81	1.59

% Change in TOA Reflectance					
	L5	L4	L3	L2	L1
Band	MSS	MSS	MSS	MSS	MSS
Green	-2.93	-4.49	-4.60	-2.62	-0.26
Red	-3.81	-4.67	-10.69	-2.29	3.74
NIR1	-1.25	1.13	-2.60	2.50	-3.84
NIR2	-3.18	-1.98	2.32	7.71	1.52

MSS Improved GCP Outlier Rejection

Rejecting Outlying GCPs has significantly improved Radial RMSE

MSS Fill Scan Addition

LM50950761997115ASA01 (Missing scan)

LM50950761997115ASA01 (Fill scan)

MSS Fill Scan Addition (Cont.)

LM50950761997115ASA01 (Missing scan) Gverify results on left, show a much more rainbow set of results which is not good. Radial RMSEs are in the 2.0 pixel range.

LM50950761997115ASA01 (fill scan) Gverify results on right, show a much more consistent result with radial RMSEs in the 1.0 pixel range.

Future Work

Collection 2

- Phase 4 GCP improvements
- Gain Updates
- Cloud Computing
- Level 2 (Surface Reflectance and Surface Temperature)

Landsat 9

- Ground System PDR (3/20-22)
- Mission CDR (4/17-19)
- Dec. 2020 Launch

