

Low cost, high resolution imagers in the IVOS framework Juan Fernandez

IVOS Meeting 30 - ESA ESTEC 29th March 2018


© SSTL 2018

Summary

- Historical Introduction to affordable EO (1981-2018)
- Small Satellite capabilities (~<1m GSD)
 - For still images
 - For vidEO
- CalVal related activities:
 - MTF
 - On-ground testing
 - In orbit results
 - SNR
 - Radiometric models for design concepts
 - In orbit calibration
- Conclusion

SÚRRE

Earth Observation: From There...

BURRE

- UoSAT-1Microsatellite
- Built between 1980-81
- Launched in Thor Delta rocket by NASA in October 1981
- First image of Corsica
- Carried a reprogrammable on board computer and a 2D CCD array imager

To our range of Imaging Payloads

Why small ?

- To keep build and launch costs low
- To be able to meet short timescale projects
- To be able to iterate engineering solutions quicker
- It allows a constellation of more satellites to increase temporal information
- Low cost and high value EO products
 - per kg launched
 - per km² imaged areas
 - Per day revisits

SURRE

Two Different Classes of Spacecraft

 July 2015 SSTL launched two different classes of small satellites from SSTL:

BURRE

- High fidelity performance SSTL S1 spacecraft (TripleSat/DMC3)
- High utility spacecraft designed for very low cost and rapid schedule missions: Carbonite-1
- Both classes of spacecraft provide high resolution imagery and have been fully operational for over two years
- Constelation + Carb1 were launched on PSLV from Sriharikota, India (SSO @651 km and 10:30 LTAN)
- Carbonite 2 was launched on 12 January 2018 at 505 km

Sub-metric surveillance satellite SSTL 300+

Very High resolution

Simultaneous capture of 1m (can achieve 0.7m)PAN GSD and 4m Multi Spectral GSD (NIR, R, G, B)

Image size

23km x 3500 km

Lifetime 7 years

súrre

Off-pointing capability Roll and Pitch up to maximum 45 degree compound angle

Agility

Fast response mode, 30 degree roll in 40s

Compound modes 2x2 area mode, along and across track stereo modes

Geolocation accuracy

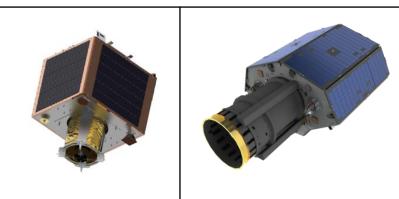
< 50m

High Storage Capacity 2 x 16GB & 2 x 256GB

High Downlink capability and Near-Real Time Capability 500 Mbit/s downlink rate and simultaneous imaging and downloading

Complete delivery of space and ground segment Satellite, Ground station, Mission Planning, Image post Processing, Launch services

Extensive heritage NigeriaSat-2 & DMC3 constellation



SSTL-50 Precision – Colour HD Video

Specification						
Spectral Bands	HD Video: PAN or colour, Still: Red, Green, Blue, NIR					
GSD	HD video: 1 m, Still imagery: 0.7 m, Both modes from the same payload					
Swath	Video mode in 2.5xk2k HD format, Still image mode 17 km swath					
Field of Regard	+/- 40°, Equivalent to 750 km on the ground					
SNR	All bands > 100:1					
Data Products	Radiometrically and geometrically calibrated, 12					
Compression Ratio	Lossless up to 2.5:1, Lossy at higher ratios					
Mass	150kg dependent on configuration					
Redundancy	Dual redundant systems					
Reference Orbit	500km, SSO, 10.30am LTAN					
Data Storage	Up to 1 Tbyte					
Downlink	80-500 Mbits per second					
Design life	5 years+					
Revisit	2 times daily above lower latitudes for 5 satellite constellation					
Data capacity	640 – 960 image scenes per day (17x17km)					
	185,000 to 280,000km^2 per day					

Comparison of S1 and Carbonite

Carbonite-1	S1		
1 year	7 years		
86 kg	447 kg		
0.6 × 0.7 × 0.9 m	3 x 1.35 x 0.65 m		
16 GBytes	554 GBytes		
1.5 m Colour imagery	1 m PAN		
and video	4 m Multispectral		
~5 km	22.5 km		
X-Band	X-band		
80 Mbits/s 500 Mbits/s			
8 months	24 months		
	1 year 86 kg 0.6 × 0.7 × 0.9 m 16 GBytes 1.5 m Colour imagery and video ~5 km X-Band 80 Mbits/s		

SURRE

SSTL S1

- DMC3 uses the SSTL S1 platform based on the tried and tested basic layout of the SSTL-300 (as on NigeriaSat-2), adding a new high resolution payload and more advanced avionics.
- SSTL S1 spacecraft is fully redundant and designed for triple-launch configuration on most popular small launcher fairings

Carbonite-1

- Carbonite-1 platform is similar in size to the heritage SSTL-100 platform
- Utilizes single string (except for receivers) architecture based on reliable heritage equipment
- Carbonite Series also allows video imaging

Examples of Carbonite use

Total number of satellites	Number of orbital planes	Lat 20° revisits	Lat 50° revisits	Maximum video duration (min)	Average video duration (min)	Comments
12	3	0-2 per day	2-3 per day	2.5	2	
24	3	3-5 per day	4-6 per day	4.6	3.3	Optimised for 30 minute intervals between videos
36	3	Daily	Daily	25	15	
36	4	2 per day	Daily	19	5	
72	3	>1 per day	>1 per day	52	35	
135	3	1-2 per day	1-3 per day	96	50	
163	9	Multiple per day	Multiple per day	264		Special case. Orbit precesses after one month and video duration is reduced

MTF

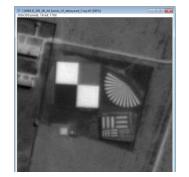
Two different systems

On-ground and In-Orbit

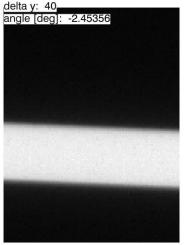
Commercial in Confidence

MTF targets - Baotou, China

surre

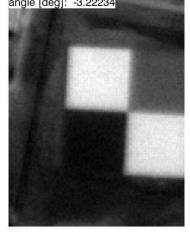

On ground vs In-Orbit (1)

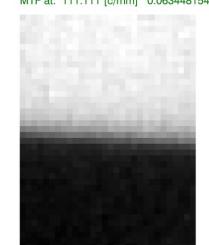
Carb2 On Ground


SÚRRE

Carb2 in Orbit

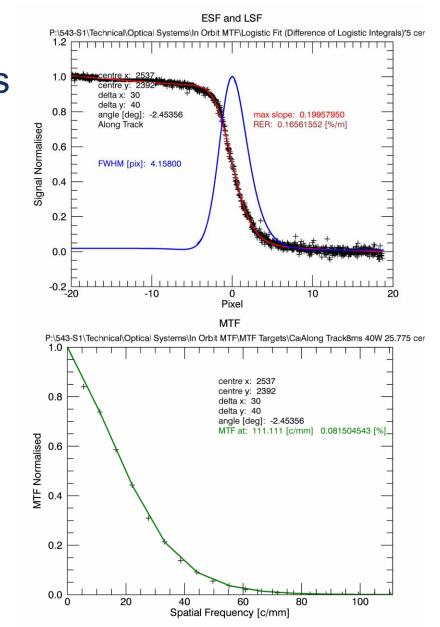
P:\543-S1\Technical\Optical Systems\In Orbit MTF\MTAlong Trackarb2\slit H 038ms 40W 25.775 RER: 0.16561552 [%/m] centre x: 2537 centre y: 2392 FWHM [pix]: 4.15800 delta x: 30 delta y: 40

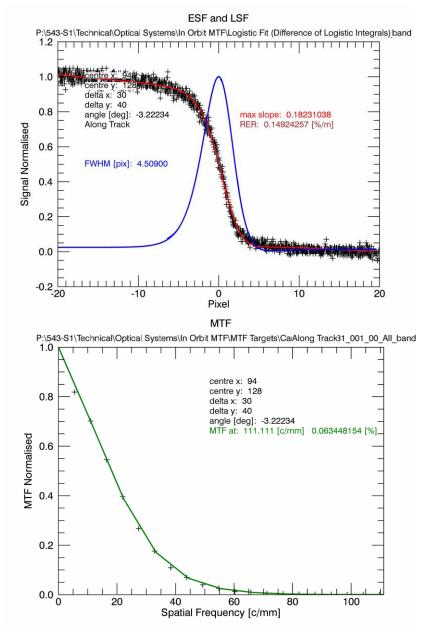




P:\543-S1\Technical\Optical Systems\In Orbit MTF\MTAlong Trackarb2\C2000131_001_00_All_band centre x: 94 RER: 0.14924257 [%/m] centre y: 128 FWHM [pix]: 4.50900 MTF at: 111.111 [c/mm] 0.063448154 [%] delta x: 30

delta y: 40 angle [deg]: -3.22234

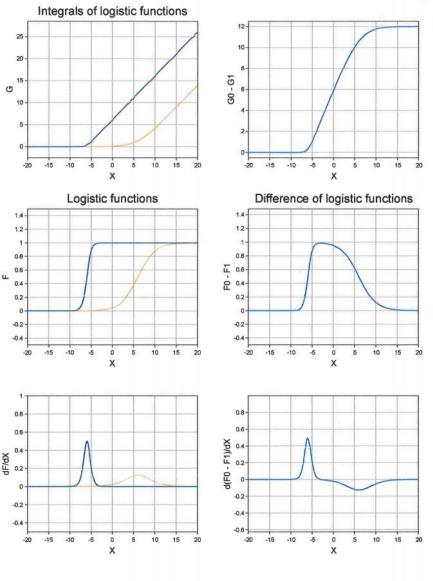




Commercial in Confidence

On ground vs In-Orbit (2)

Ground-based measurements (left) are in good agreement with in-orbit estimates (right)



SÚRRE

Logistic Functions

- Logistic functions can be used as an approximation to the Edge Spread Function
- Two logistics can be used for nonsymmetrical shapes
- The difference of two logistic integrals with different parameters allows a closer representation to the ESF and LSF
- It allows an analytical function to obtain MTF

SURRE

Left position: -6.00

Right position: 6.00

Radiometry

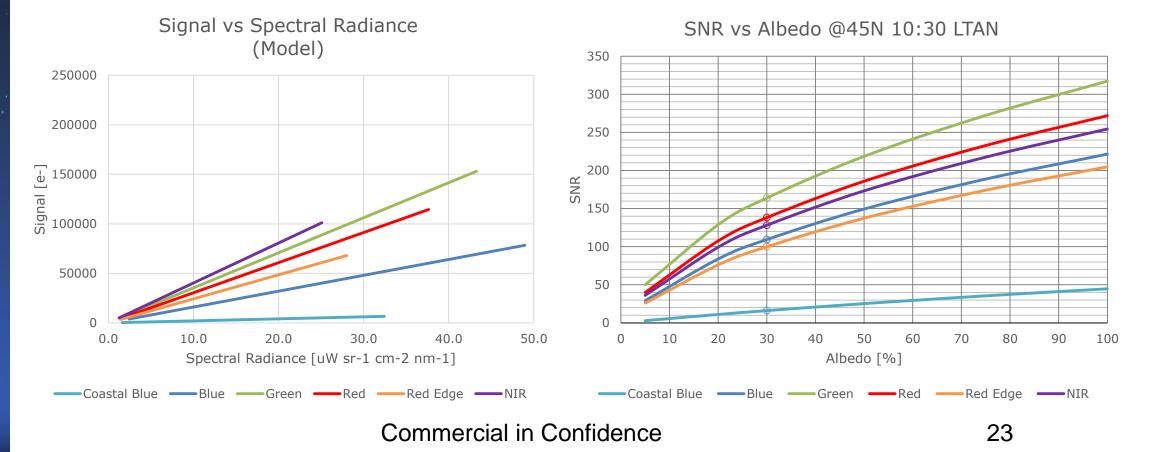
Models and Measurements

On-ground and In-Orbit

Commercial in Confidence

Radiometric calibration

- MODTRAN 5.3 used to predict TOA Radiances for a given EO mission; a radiometric instrument model is derived and used at 10nm sampling.
- Spectral bands are very close or equal to Landsat 8
- Typically, a characterisation is performed on-ground, sometimes with traceability (NPL spectroradiometer, integrating sphere)
- Calibration is aimed to typically ~5-7% error
- Small satellites can benefit from expanding infrastructure, algorithms and calculated uncertainty budgets
- Need to use as many calibration sites as possible (RadCalNet) for rapid commissioning due to limited observations and use it for Verification purposes (customer requirements)
- Typically PICS sites have been used (Libya-4)

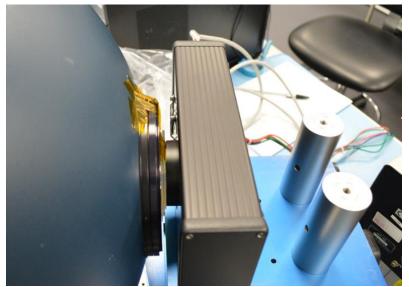

SURRE

Radiometry for SNR

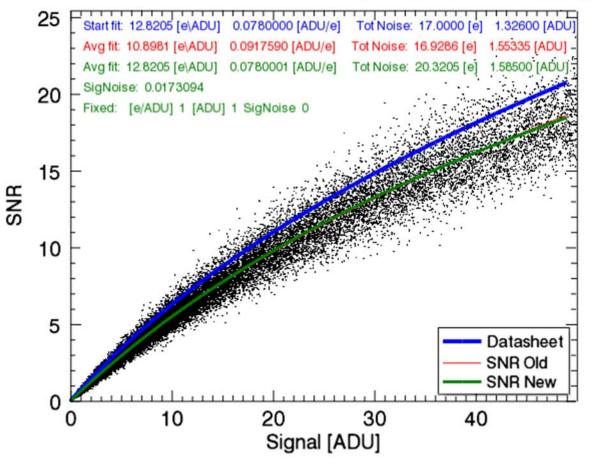
Customer specifies viewing conditions or radiance.

SÚRRE

 We use Modtran to obtain TOA and the instrument model to calculate SNR



Noise measurements


 The noise assumed in the instrument model is verified by measurements

SURR

 Integrating sphere is typically used at detector level

Normal Detector\Gain 0\New Lamp\Large Spot Moving\png

Conclusion

- Affordable satellites are an effective solution for Earth Observation
- Performance is suitable for a range of applications
- Current CEOS IVOS WGCV PICSCAR initiatives and current work is equally important for small satellite missions
 - MTF analysis
 - SNR
- Interest to contribute and collaborate with many of the initiatives and topics discussed in this workshop

BURRE

Thank You!

© Surrey Satellite Technology Ltd

Tycho House, 20 Stephenson Road, Surrey Research Park, Guildford, Surrey, GU2 7YE, United Kingdom Tel: +44(0)1483803803 | Fax: +44(0)1483803804 | Email: info@sstl.co.uk | Web: www.sstl.co.uk