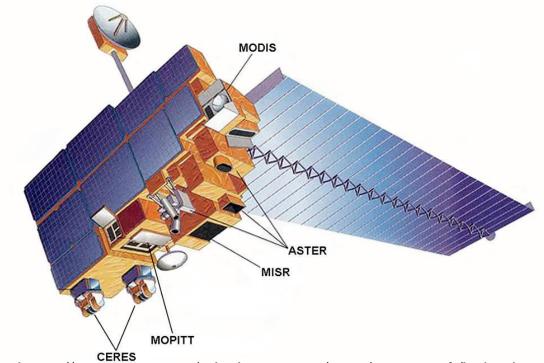


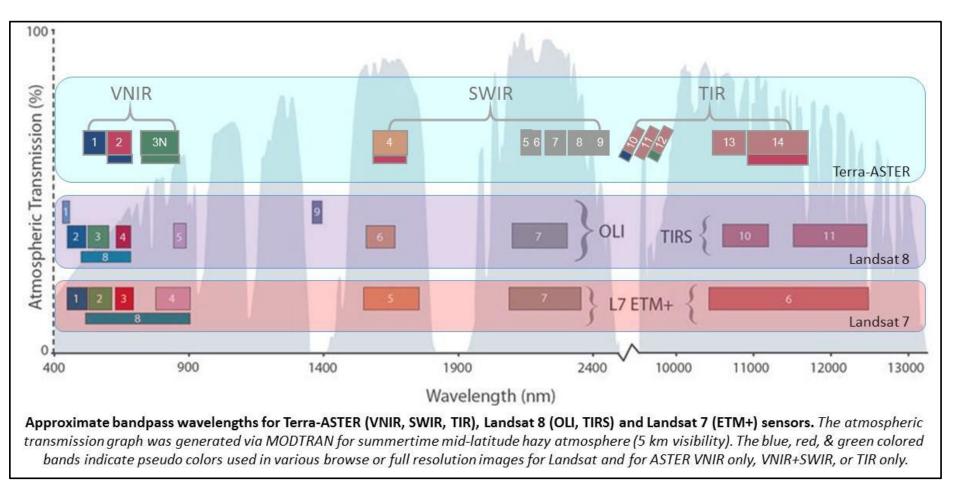
ASTER data acquisition over RadCalNet site

Hirokazu YAMAMOTO, Satoshi TSUCHIDA, Kenta OBATA, Koki IWAO National Institute of Advanced Industrial Science and Technology



CEOS WGCV IVOS meetings Mar 16, 2017 University of Arizona, US

Launched on Dec. 18th, 1999



https://www.nasa.gov/mission_pages/terra/spacecraft/index.html

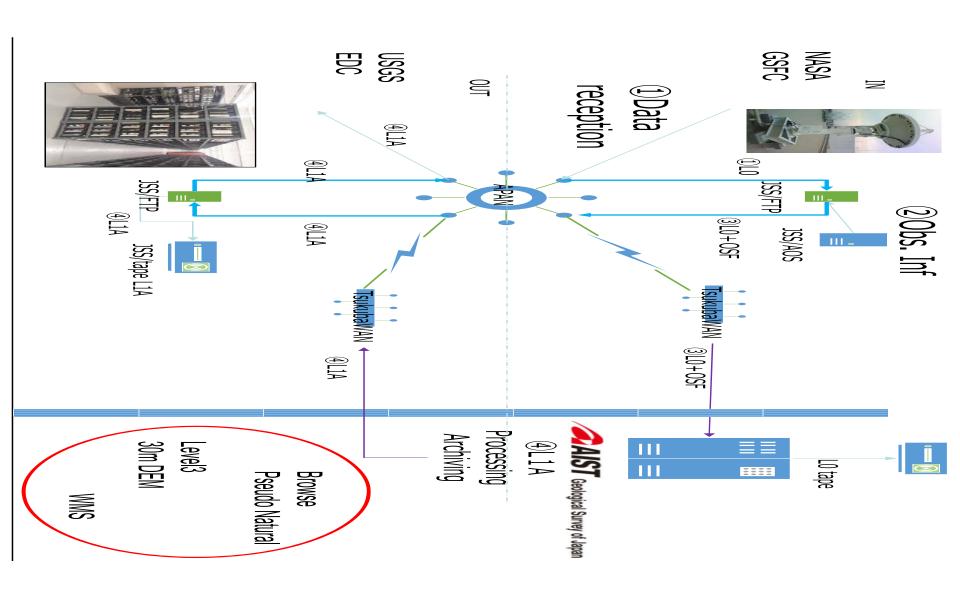
- 1. ASTER (VNIR, SWIR, TIR; 15,30,90m)
 (Advanced Spaceborne Thermal Emission and Reflection Radiometer)
- 2. MODIS (VNIR, SWIR, TIR; 250,500,1000m) (Moderate-resolution Imaging Spectroradiometer)
- 3. MISR (Multi-angle Imaging SpectroRadiometer)
- 4. CERES (Clouds and the Earth's Radiant Energy System)
- 5. MOPITT

 (Measurements of Pollution in the Troposphere)

Terra-ASTER and Landsat 7/8 Spectral Bands Compared

AST_L1T Product User's Guide Version 1.0, 2015

ASTER SWIR detectors are no longer functioning due to anomalously high SWIR detector temperatures.


ASTER SWIR data acquired since April 2008 are unavailable.

Characteristics of the 3 ASTER Sensor Systems.

Subsystem	Band	Spectral Range (µm)	Spatial	Quantization	
	No.		Resolution, m	Levels	
	1	0.52-0.60			
VNIR	2	0.63-0.69	15	8 bits	
	3N	0.78-0.86			
	3B	0.78-0.86			
	4	1.60-1.70			
	5	2.145-2.185			
SWIR	6	2.185-2.225	30	8 bits	
	7	2.235-2.285			
	8	2.295-2.365			
	9	2.360-2.430			
	10	8.125-8.475			
	11	8.475-8.825			
TIR	12	8.925-9.275	90	12 bits	
	13	10.25-10.95			
	14	10.95-11.65			

Background

- ASTER is developed by Ministry of Economy, Trade and Industry (METI), Japan and is on TERRA satellite managed by NASA. About 3 million images have been archived covers globally. AIST has been involved in ASTER project from the development stage.
- The calibration WG in the US-Japan ASTER science team steer the radiometric calibration, and AIST plays many roles in this WG.
- AIST has been conducted vicarious calibration for ASTER (@Railroad Valley Playa, Ivanpah Playa, Alkali Lake etc.) since 2000.
- We try to measure for vicarious calibration in the both of Northern and Southern hemispheres only once a year, and ground and sky conditions would NOT be always good.
- Especially, post-ASTER, ISS HISUI will be limited to a few times over each calibration site in one year because of its orbital characteristics.
- We have started to discuss the use of the automated calibration facilities such as the radiometric calibration network of automated instruments.

- A request from an individual ASTER User is called a Data Acquisition Request (DAR).
- A request from the entire ASTER Science Team is called a Science Team Acquisition Request (STAR).
- Information for acquisition request
 - AOI (longitude / latitude)
 - Date / Time
 - Gain mode (VNIR)
 - Cloud
 - Other

RadCalNet site

- Railroad Valley Playa
 - latitude 38.497[deg] longitude -115.690[deg]
 - Path40 Row96 View4 Pointing 0.0 [deg]
- La Crau
 - latitude 43.559 [deg] longitude 4.864[deg]
 - Path196 Row86 View4 Pointing 0.0 [deg]
- Baotou
 - latitude 40.852[deg] longitude 109.629[deg]
 - Path128 Row91 View5 2.85[deg]

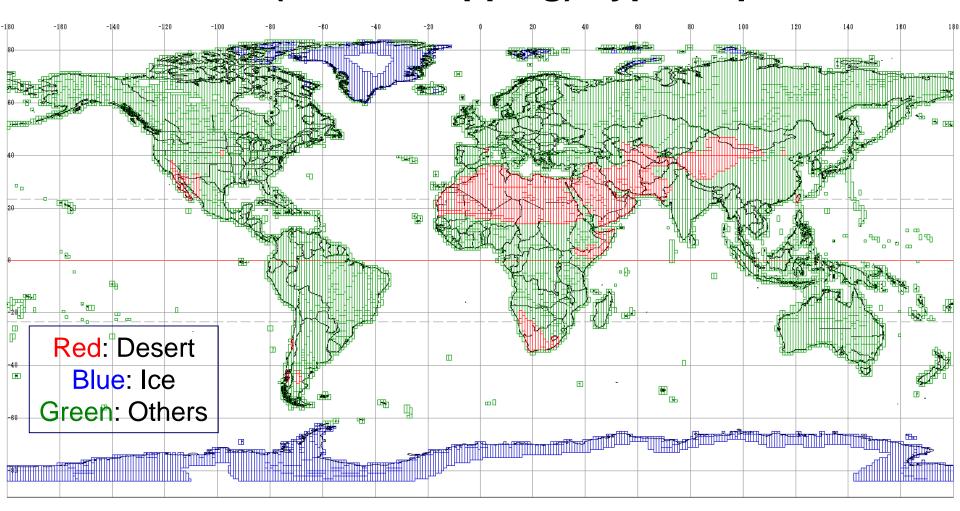
ASTER Path Calendar

_						,				,	-					
													1/1	1/2	1/3	1/4
	1/5	1/6	1/7	1/8	1/9	1/10		1/12	1/13	1/14	1/15	1/16	1/17	1/18	1/19	1/20
	1/21	1/22	1/23	1/24	1/25	1/26	1/27	1/28	1/29	1/30	1/31	2/1	2/2	2/3	2/4	2/5
	2/6	2/7	2/8	2/9	2/10	2/11	2/12	2/13	2/14	2/15	2/16	2/17	2/18	2/19	2/20	2/21
	2/22	2/23	2/24	2/25	2/26	2/27	2/28	3/1	3/2	3/3	3/4	3/5	3/6	3/7	3/8	3/9
	3/10	3/11	3/12	3/13	3/14	3/15	3/16	3/17	3/18	3/19	3/20	3/21	3/22	3/23	3/24	3/25
	3/26	3/27	3/28	3/29	3/30	3/31	4/1	4/2	4/3	4/4	4/5	4/6	4/7	4/8	4/9	4/10
	4/11	4/12	4/13	4/14	4/15	4/16	4/17	4/18	4/19	4/20	4/21	4/22	4/23	4/24	4/25	4/26
	4/27	4/28	4/29	4/30	5/1	5/2	5/3	5/4	5/5	5/6	5/7	5/8	5/9	5/10	5/11	5/12
2	5/13	5/14	5/15	5/16	5/17	5/18	5/19	5/20	5/21	5/22	5/23	5/24	5/25	5/26	5/27	5/28
_	5/29	5/30	5/31	6/1	6/2	6/3	6/4	6/5	6/6	6/7	6/8	6/9	6/10	6/11	6/12	6/13
0	6/14	6/15	6/16	6/17	6/18	6/19	6/20	6/21	6/22	6/23	6/24	6/25	6/26	6/27	6/28	6/29
1	6/30	7/1	7/2	7/3	7/4	7/5	7/6	7/7	7/8	7/9	7/10	7/11	7/12	7/13	7/14	7/15
7	7/16	7/17	7/18	7/19	7/20	7/21	7/22	7/23	7/24	7/25	7/26	7/27	7/28	7/29	7/30	7/31
′	8/1	8/2	8/3	8/4	8/5	8/6	8/7	8/8	8/9	8/10	8/11	8/12	8/13	8/14	8/15	8/16
	8/17	8/18	8/19	8/20	8/21	8/22	8/23	8/24	8/25	8/26	8/27	8/28	8/29	8/30	8/31	9/1
	9/2	9/3	9/4	9/5	9/6	9/7	9/8	9/9	9/10	9/11	9/12	9/13	9/14	9/15	9/16	9/17
	9/18	9/19	9/20	9/21	9/22	9/23	9/24	9/25	9/26	9/27	9/28	9/29	9/30	10/1	10/2	10/3
	10/4	10/5	10/6	10/7	10/8	10/9	10/10	10/11	10/12	10/13	10/14	10/15	10/16	10/17	10/18	10/19
	10/20	10/21	10/22	10/23	10/24	10/25	10/26	10/27	10/28	10/29	10/30	10/31	11/1	11/2	11/3	11/4
	11/5	11/6	11/7	11/8	11/9	11/10	11/11	11/12	11/13	11/14	11/15	11/16	11/17	11/18	11/19	11/20
	11/21	11/22	11/23	11/24	11/25	11/26	11/27	11/28	11/29	11/30	12/1	12/2	12/3	12/4	12/5	12/6
	12/7	12/8	12/9	12/10	12/11	12/12	12/13	12/14	12/15	12/16	12/17	12/18	12/19	12/20	12/21	12/22
	12/23	12/24	12/25	12/26	12/27	12/28	12/29	12/30	12/31							
	77	84	91	82	89	80		78			83	90	81	88	79	86
	93	100	107	98	105	96	103	94	101	92	99	106	97	104	95	102
	109	116	123	114	121	112	119	110	117	108	115	122	113	120	111	118
-	125	132	139	130	137	128		126	133	124	131	138	129	136	127	134
亡	141	148	155	146	153	144	151	142	149	140	147	154	145	152	143	150
АТН	157	164	171	162	169	160	167	158	165	156	163	170	161	168	159	166
Д	173	180	187	178	185	176	183	174	181	172	179	186	177	184	175	182
α	189	196	203	194	201	192	199	190	197	188	195	202	193	200	191	198
Щ	205	212	219	210	217	208	215	206	213	204	211	218	209	216	207	214
STER	221	228	2	226	233	224	231	222	229	220	227	1	225	232	223	230
Ϋ́	4	11	18	9	16	7	14	5	12	3	10	17	8	15	6	13
	20	27	34	25	32	23	30	21	28	19	26	33	24	31	22	29
	36	43	50	41	48	39	46	37	44	35	42	49	40	47	38	45
	52	59	66	57	64	55	62	53	60	51	58	65	56	63	54	61
	68	75		73		71		69		67	74		72		70	

- The VNIR subsystem
 - nadir-looking and the other backward-looking (26.7 degrees) for stereo observations
 - Cross-track pointing: ±24 degrees
- The SWIR subsystem
 - Nadir looking
 - Cross-track pointing: ± 8.55 degrees
- The TIR subsystem
 - Nadir-looking
 - Cross-track pointing: ± 8.55 degrees

ASTER Gain mode

Band No.	Maximum ra	diance (W/(m ² *sr*	μm)		Band No.	Coefficient ($W/(m^2*sr*\mu m)/DN$	()	
	High gain	Normal	Low Gain 1	Low gain 2		High gain	Normal	Low Gain 1	Low gain 2
		Gain		-			Gain		
1	170.8	427	569	N/A	1	0.676	1.688	2.25	N/A
2	179.0	358	477		2	0.708	1.415	1.89	
3N	106.8	218	290		3N	0.423	0.862	1.15	
3B	106.8	218	290		3B	0.423	0.862	1.15	
4	27.5	55.0	73.3	73.3	4	0.1087	0.2174	0.290	0.290
5	8.8	17.6	23.4	103.5	5	0.0348	0.0696	0.0925	0.409
6	7.9	15.8	21.0	98.7	6	0.0313	0.0625	0.0830	0.390
7	7.55	15.1	20.1	83.8	7	0.0299	0.0597	0.0795	0.332
8	5.27	10.55	14.06	62.0	8	0.0209	0.0417	0.0556	0.245
9	4.02	8.04	10.72	67.0	9	0.0159	0.0318	0.0424	0.265
10	N/A	28.17	N/A	N/A	10	N/A	6.822 x 10 ⁻³	N/A	N/A
11		27.75			11		6.780×10^{-3}		
12		26.97			12		6.590×10^{-3}		
13		23.30			13		5.693 x 10 ⁻³		
14		21.38			14		5.225 x 10 ⁻³		


Maximum Radiance Values for all ASTER Bands and all Gains.

Calculated Unit Conversion Coefficients.

Abrams, Hook, Ramachandran, 2002, ASTER User Handbook Version 2

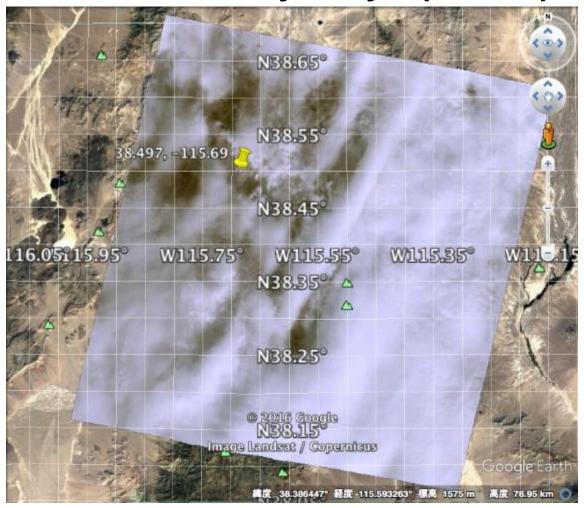
GM (Global Mapping) Type Map

GM (Global Mapping) parameter

Туре	Avoid		(Gain		A'	W	Sun Angle
	Cloud	VNIR		SWIR	Start End		Minimum	
		1	1 2 3		4~9			
Ice								
N90~N40	No	N	N	N	Any	Jun.	Sep.	20
N40~S40	_	-	_	-	-	-	-	-
S40~S90	No	N	N	N	Any	Dec.	Mar.	20
Desert								
N90~N40	20%	N	N	N	Any	Jun.	Sep.	20
N40~S40	20%	N	N	N	Any	Whole	Year	30
S40~S90	20%	N	N	N	Any	Dec.	Mar.	20
Others								
N90~N40	20%	Н	Н	N	Any	Jun.	Sep.	20
N40~S40	20%	Н	Н	N	Any	Whole Year		40
S40~S90	20%	Н	Н	N	Any	Dec.	Mar.	20

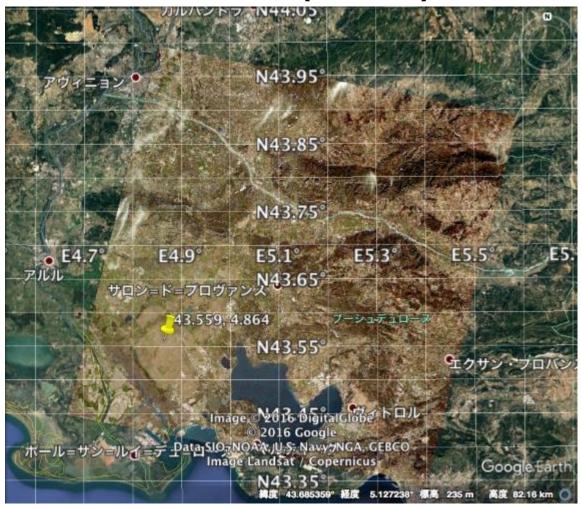
ASTER observation request

- Category : STAR Local
- Objective : Calibration
- Duration: 3yrs.
- Observation : FULL mode (VNIR/SWIR/TIR)
- VNIR Gain: NOR/NOR/NOR
- Frequency: 1 obs. / 32days (11 obs. / yr)
 - Usual frequency is 1 obs. / 48 days
 - Both area of west and east cannot be observed in case of 1 obs. / 16 days.
- Cloud: 1~100%
- GC : ON
- EDS(Expedited Data Set) Flag: OFF
- Urgent Flag: OFF

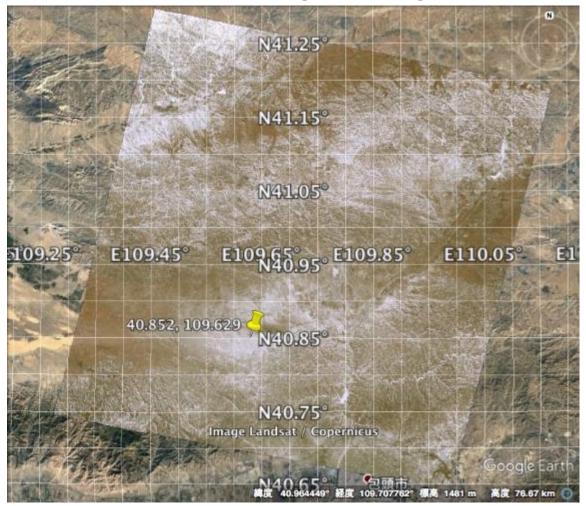

 NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST)

 OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST)

 OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST)


Railroad Valley Playa (Latest)

Railroad Valley Playa captured by ASTER on Feb 18, 2017 (UTC18:38:29) NOR/NOR/NOR


La Crau (Latest)

La Crau captured by ASTER on Feb 23, 2017 (UTC10:41:08) NOR/NOR/NOR

Baotou (Latest)

Baotou captured by ASTER on Feb 27, 2017 (UTC03:41:38) NOR/NOR/NOR

Railroad Valley Playa

					<u>'</u>			
ASTER L1A	Date	Time(UTC)	pointing_angle	solar_elevation	mod35_cloud	Obs Mode	Path-Row-View	Gain
ASTL1A_0004061906301304219000	2000/4/6	19:06:30	21.061	57.089097	1	V	42-951	HGH/HGH/NOR/NOR-OFF/OFF/OFF/OFF/OFF
ASTL1A_0005011900401304219029	2000/5/1	19:00:40	8.547333333	65.02878	N/A	VST	41-95-7	HGH/HGH/NOR/NOR-NOR/NOR/NOR/NOR/NOR
ASTL1A_0005011900491304219030	2000/5/1	19:00:49	8.547333333	65.360864	N/A	VST	41-96-7	HGH/HGH/NOR/NOR-NOR/NOR/NOR/NOR/NOR
ASTL1A_0005101854091304219000	2000/5/10	18:54:09	2.841	67.471195	11	VST	40-96-5	HGH/HGH/NOR/NOR-NOR/NOR/NOR/NOR/NOR
ASTL1A_0005261853521304219001	2000/5/26	18:53:52	2.845666667	70.445287	15	VST	40-96-5	HGH/HGH/NOR/NOR-NOR/NOR/NOR/NOR/NOR
ASTL1A_0006021859581304219011	2000/6/2	18:59:58	8.558333333	71.190634	1	VST	41-95-7	HGH/HGH/NOR/NOR-NOR/NOR/NOR/NOR/NOR
ASTL1A_0006021900061304219012	2000/6/2	19:00:06	8.558333333	71.500718	1	VST	41-96-7	HGH/HGH/NOR/NOR-NOR/NOR/NOR/NOR/NOR
ASTL1A_0006091906070205020049	2000/6/9	19:06:07	21.058	72.834595	37	V	42-951	HGH/HGH/NOR/NOR-OFF/OFF/OFF/OFF/OFF
ASTL1A_0006111853531304219023	2000/6/11	18:53:53	1.995372333	71.658351	N/A	VST	40-96-5	HGH/HGH/NOR/NOR-NOR/NOR/NOR/NOR/NOR
ASTL1A_0006181859471304219035	2000/6/18	18:59:47	8.564	71.802892	27	VST	41-95-7	HGH/HGH/NOR/NOR-NOR/NOR/NOR/NOR/NOR
ASTL1A_0006181859561304219036	2000/6/18	18:59:56	8.564	72.235217	14	VST	41-96-7	HGH/HGH/NOR/NOR-NOR/NOR/NOR/NOR/NOR
ASTL1A_0007291853011304219030	2000/7/29	18:53:01	0.008666667	66.803605	8	VST	40-96-4	HGH/HGH/NOR/NOR-NOR/NOR/NOR/NOR/NOR
ASTL1A_0008141853181304219029	2000/8/14	18:53:18	2.857666667	63.027644	N/A	VST	40-96-5	HGH/HGH/NOR/NOR-NOR/NOR/NOR/NOR/NOR
ASTL1A_0008211859301304219083	2000/8/21	18:59:30	8.572333333	61.123113	N/A	VST	41-95-7	HGH/HGH/NOR/NOR-NOR/NOR/NOR/NOR/NOR

ASTL1A_1605291845251605309043	2016/5/29	18:45:25	8.579333333	69.153541	54	VST	41-95-7	HGH/HGH/NOR/NOR-NOR/NOR/NOR/NOR/NOR
ASTL1A_1605291845341605309044	2016/5/29	18:45:34	8.579333333	69.582796	28	VST	41-96-7	HGH/HGH/NOR/NOR-NOR/NOR/NOR/NOR/NOR
ASTL1A_1606231839311606249001	2016/6/23	18:39:31	0.016	69.56834	N/A	VST	40-96-4	NOR/NOR/NOR/NOR-NOR/NOR/NOR/NOR/NOR
ASTL1A_1607021833201607039001	2016/7/2	18:33:20	-8.569666667	68.053188	34	VST	39-96-1	NOR/NOR/NOR/NOR-NOR/NOR/NOR/NOR/NOR
ASTL1A_1608241851211608259001	2016/8/24	18:51:21	20.44	59.9045	1	V	42-951	NOR/NOR/NOR/NOR-OFF/OFF/OFF/OFF/OFF
ASTL1A_1608261839061608279001	2016/8/26	18:39:06	-0.013333333	58.161187	4	VST	40-96-4	NOR/NOR/NOR/NOR-NOR/NOR/NOR/NOR/NOR
ASTL1A_1609111838511609129001	2016/9/11	18:38:51	0.018	53.194377	29	VST	40-96-4	NOR/NOR/NOR/NOR-NOR/NOR/NOR/NOR/NOR
ASTL1A_1611281850591611299001	2016/11/28	18:50:59	20.459	29.173292	82	V	42-951	NOR/NOR/NOR/NOR-OFF/OFF/OFF/OFF/OFF
ASTL1A_1611301838471612019001	2016/11/30	18:38:47	0.016	28.812808	50	VST	40-96-4	NOR/NOR/NOR/NOR-NOR/NOR/NOR/NOR/NOR
ASTL1A_1702181838291702199001	2017/2/18	18:38:29	0.014	36.870506	97	VST	40-96-4	NOR/NOR/NOR/NOR-NOR/NOR/NOR/NOR/NOR

170 Scenes (need to check)

La Crau

ASTER L1A	Date	Time(UTC)	pointing_angle	solar_elevation	mod35_cloud	Obs Mode	Path-Row-View	Gain
ASTL1A_0009041056121305029022	2000/9/4	10:56:12	-2.838	51.806845	1	VST	196-86-3	HGH/HGH/NOR/NOR-NOR/NOR/NOR/NOR/NOR
ASTL1A_0103151051461305159046	2001/3/15	10:51:46	-2.876333333	42.399988	1	VST	196-86-3	HGH/HGH/NOR/NOR-NOR/NOR/NOR/NOR/NOR
ASTL1A_0105271044261305159019	2001/5/27	10:44:26	-8.579	65.003793	7	VST	195-86-1	HGH/HGH/NOR/NOR-NOR/NOR/NOR/NOR/NOR
ASTL1A_0105271044351305159020	2001/5/27	10:44:35	-8.579	65.313005	1	VST	195-87-1	HGH/HGH/NOR/NOR-NOR/NOR/NOR/NOR/NOR
ASTL1A_0106031050241305159052	2001/6/3	10:50:24	-0.038666667	66.299248	29	VST	196-86-4	HGH/HGH/NOR/NOR-NOR/NOR/NOR/NOR/NOR
ASTL1A_0106261055231305159032	2001/6/26	10:55:23	5.705	67.230488	N/A	VST	197-86-6	HGH/HGH/NOR/NOR-NOR/NOR/NOR/NOR/NOR
ASTL1A_0108131055041305159057	2001/8/13	10:55:04	8.569333333	59.138174	1	VST	197-86-7	HGH/HGH/NOR/NOR-NOR/NOR/NOR/NOR/NOR
ASTL1A_0110181040331305159031	2001/10/18	10:40:33	-8.534333333	35.365343	100	VST	195-86-1	HGH/HGH/NOR/NOR-NOR/NOR/NOR/NOR/NOR
ASTL1A_0110181040421305159032	2001/10/18	10:40:42	-8.534333333	35.931045	100	VST	195-87-1	HGH/HGH/NOR/NOR-NOR/NOR/NOR/NOR/NOR
ASTL1A_0110251046201305159000	2001/10/25	10:46:20	0.018	33.467822	1	VST	196-86-4	HGH/HGH/NOR/NOR-NOR/NOR/NOR/NOR/NOR
ASTL1A_0111011051591305159022	2001/11/1	10:51:59	8.594	31.643543	89	VST	197-86-7	HGH/HGH/NOR/NOR-NOR/NOR/NOR/NOR/NOR
ASTL1A_0111101045371305159000	2001/11/10	10:45:37	0.018	28.353038	87	VST	196-86-4	HGH/HGH/NOR/NOR-NOR/NOR/NOR/NOR/NOR
ASTL1A_0201041050101305169001	2002/1/4	10:50:10	8.562333333	22.703793	100	VST	197-86-7	LOW/LOW/LOW/LOW-NOR/NOR/NOR/NOR/NOR
ASTL1A_0206221042391305169028	2002/6/22	10:42:39	-0.022	66.162352	1	VST	196-86-4	HGH/HGH/NOR/NOR-NOR/NOR/NOR/NOR/NOR

_

81 VST ASTL1A 1306291035121307019038 2013/6/29 10:35:12 -8.54965.220443 195-86-1 HGH/HGH/NOR/NOR-NOR/NOR/NOR/NOR/NOR/NOR ASTL1A_1306291035211307019039 2013/6/29 10:35:21 -8.549 65.523744 70 VST 195-87-1 HGH/HGH/NOR/NOR-NOR/NOR/NOR/NOR/NOR/NOR ASTL1A_1404291035101405159021 2014/4/29 10:35:10 -8.57357.864226 N/A VST 195-86-1 HGH/HGH/NOR/NOR-NOR/NOR/NOR/NOR/NOR ASTL1A_1404291035191405159022 2014/4/29 10:35:19 -8.57358.475681 N/A VST 195-87-1 HGH/HGH/NOR/NOR-NOR/NOR/NOR/NOR/NOR/NOR -2.842666667 ASTL1A_1406071041521406099031 2014/6/7 10:41:52 65.809304 85 VST 196-86-3 HGH/HGH/NOR/NOR-NOR/NOR/NOR/NOR/NOR/NOR 2014/9/27 ASTL1A_1409271041341409299047 10:41:34 0.016 43.218251 1 VST 196-86-4 HGH/HGH/NOR/NOR-NOR/NOR/NOR/NOR/NOR ASTL1A 1504071041361504089012 2015/4/7 10:41:36 -2.866666667 50.464144 6 VST 196-86-3 HGH/HGH/NOR/NOR-NOR/NOR/NOR/NOR/NOR/NOR ASTL1A 1603241041141603259012 2016/3/24 10:41:14 -2.866666667 45.57619 1 VST 196-86-3 HGH/HGH/NOR/NOR-NOR/NOR/NOR/NOR/NOR/NOR -2.864666667 ASTL1A_1604251041311604269012 2016/4/25 10:41:31 57.283122 1 VST 196-86-3 HGH/HGH/NOR/NOR-NOR/NOR/NOR/NOR/NOR ASTL1A 1702231041081702249001 2017/2/23 10:41:08 0.014 34.089247 1 VST 196-86-4 NOR/NOR/NOR/NOR-NOR/NOR/NOR/NOR/NOR

65 Scenes (need to check)

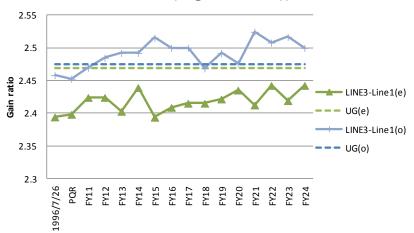
Baotou

						1		
ASTER L1A	Date	Time(UTC)	pointing_angle	solar_elevation	mod35_cloud	Obs Mode	Path-Row-View	Gain
ASTL1A_0007310349521304189045	2000/7/31	3:49:52	-5.691	64.227071	3	VST	127-91-2	HGH/HGH/NOR/NOR-NOR/NOR/NOR/NOR/NOR
ASTL1A_0007310350011304189046	2000/7/31	3:50:01	-5.691	64.525813	1	VST	127-92-2	HGH/HGH/NOR/NOR-NOR/NOR/NOR/NOR/NOR
ASTL1A_0008160350261304189028	2000/8/16	3:50:26	-8.541333333	60.269536	N/A	VST	127-92-1	HGH/HGH/NOR/NOR-NOR/NOR/NOR/NOR/NOR
ASTL1A_0009080356391304189026	2000/9/8	3:56:39	2.674666667	53.501324	1	VST	128-91-5	HGH/HGH/NOR/NOR-NOR/NOR/NOR/NOR/NOR
ASTL1A_0011270354381304189014	2000/11/27	3:54:38	2.843	27.268667	43	VST	128-91-5	HGH/HGH/NOR/NOR-NOR/NOR/NOR/NOR/NOR
ASTL1A_0012130354141305139009	2000/12/13	3:54:14	0.010666667	25.102339	68	VST	128-91-4	HGH/HGH/NOR/NOR-NOR/NOR/NOR/NOR/NOR
ASTL1A_0105150345161304189060	2001/5/15	3:45:16	-2.868	65.653012	3	VST	127-92-3	HGH/HGH/NOR/NOR-NOR/NOR/NOR/NOR/NOR
ASTL1A_0106160344181304189044	2001/6/16	3:44:18	-8.545666667	68.467017	N/A	VST	127-92-1	HGH/HGH/NOR/NOR-NOR/NOR/NOR/NOR/NOR
ASTL1A_0107020343381304189059	2001/7/2	3:43:38	-8.547666667	67.829416	N/A	VST	127-92-1	HGH/HGH/NOR/NOR-NOR/NOR/NOR/NOR/NOR
ASTL1A_0205020337061304199023	2002/5/2	3:37:06	-4.188333333	61.482277	86	VST	127-92-2	HGH/HGH/NOR/NOR-NOR/NOR/NOR/NOR/NOR
ASTL1A_0206190336551304199044	2002/6/19	3:36:55	-5.718333333	67.80154	5	VST	127-91-2	HGH/HGH/NOR/NOR-NOR/NOR/NOR/NOR/NOR
ASTL1A_0206190337041304199045	2002/6/19	3:37:04	-5.718333333	68.052487	5	VST	127-92-2	HGH/HGH/NOR/NOR-NOR/NOR/NOR/NOR/NOR
ASTL1A_0209070337011304209013	2002/9/7	3:37:01	-8.552333333	52.621277	100	VST	127-92-1	HGH/HGH/NOR/NOR-NOR/NOR/NOR/NOR/NOR
ASTL1A_0209300342551304209009	2002/9/30	3:42:55	-0.01	44.687746	74	VST	128-91-4	HGH/HGH/NOR/NOR-NOR/NOR/NOR/NOR/NOR
ASTL1A_0304260341551304209041	2003/4/26	3:41:55	5.709	59.84798	2	VST	128-91-6	HGH/HGH/NOR/NOR-NOR/NOR/NOR/NOR/NOR
ASTL1A_0310030341281304209011	2003/10/3	3:41:28	-0.0003333333	43.814938	1	VST	128-91-4	HGH/HGH/NOR/NOR-NOR/NOR/NOR/NOR/NOR
ASTL1A_0407100335221304209039	2004/7/10	3:35:22	-8.539	66.030845	32	VST	127-92-1	HGH/HGH/NOR/NOR-NOR/NOR/NOR/NOR/NOR
ASTL1A_0408110335101304189036	2004/8/11	3:35:10	-8.536	60.092965	100	VST	127-92-1	HGH/HGH/NOR/NOR-NOR/NOR/NOR/NOR/NOR
ASTL1A_0408270334571304189036	2004/8/27	3:34:57	-8.527	55.672037	100	VST	127-92-1	HGH/HGH/NOR/NOR-NOR/NOR/NOR/NOR/NOR
ASTL1A_0409120334581304189024	2004/9/12	3:34:58	-8.55	50.458814	4	VST	127-92-1	HGH/HGH/NOR/NOR-NOR/NOR/NOR/NOR/NOR
ASTL1A_0409190340591304189031	2004/9/19	3:40:59	2.832	48.500146	N/A	VST	128-91-5	HGH/HGH/NOR/NOR-NOR/NOR/NOR/NOR/NOR
ASTL1A_0409280334531304189010	2004/9/28	3:34:53	-8.554333333	45.223534	1	VST	127-92-1	HGH/HGH/NOR/NOR-NOR/NOR/NOR/NOR/NOR
ASTL1A_0410050340511304189023	2004/10/5	3:40:51	5.700333333	42.781595	1	VST	128-91-6	HGH/HGH/NOR/NOR-NOR/NOR/NOR/NOR/NOR
ASTL1A_0501180334561304209002	2005/1/18	3:34:56	-8.558	26.259201	64	VST	127-92-1	HGH/HGH/NOR/NOR-NOR/NOR/NOR/NOR/NOR
ASTL1A_0606300335171304199062	2006/6/30	3:35:17	-8.547	67.109596	1	VST	127-92-1	HGH/HGH/NOR/NOR-NOR/NOR/NOR/NOR/NOR
ASTL1A_0607070341221304199074	2006/7/7	3:41:22	2.846666667	67.150322	99	VST	128-91-5	HGH/HGH/NOR/NOR-NOR/NOR/NOR/NOR/NOR
ASTL1A_1309050335451309069030	2013/9/5	3:35:45	-5.718	53.063894	7	VST	127-91-2	HGH/HGH/NOR/NOR-LO2/LO2/LO2/LO2/LO2/LO2
ASTL1A_1309050335531309069031	2013/9/5	3:35:53	-5.718	53.246839	13	VST	127-92-2	HGH/HGH/NOR/NOR-LO2/LO2/LO2/LO2/LO2/LO2
ASTL1A_1406270342111406289026	2014/6/27	3:42:11	2.869333333	67.899266	100	VST	128-91-5	HGH/HGH/NOR/NOR-NOR/NOR/NOR/NOR/NOR
ASTL1A_1507250336441507269038	2015/7/25	3:36:44	-5.718333333	63.952082	28	VST	127-91-2	HGH/HGH/NOR/NOR-NOR/NOR/NOR/NOR/NOR
ASTL1A_1507250336531507269039	2015/7/25	3:36:53	-5.718333333	64.382485	60	VST	127-92-2	HGH/HGH/NOR/NOR-NOR/NOR/NOR/NOR/NOR
ASTL1A_1702270341381702289001	2017/2/27	3:41:38	2.845333333	38.123467	89	VST	128-91-5	NOR/NOR/NOR/NOR-NOR/NOR/NOR/NOR/NOR

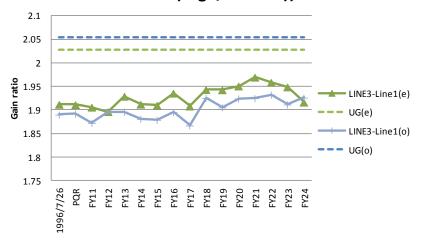
32 Scenes (need to check)

Conclusions

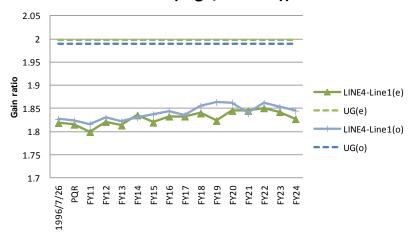
- ASTER observation requests over RadCalNet are done on Feb, 2017.
 - Duration : 3yrs.
 - Observation : FULL mode (VNIR/SWIR(not Available)/TIR)
 - VNIR Gain: NOR/NOR/NOR
 - Frequency: 1 obs. / 32days (11 obs. / yr)
 - Usual frequency is 1 obs. / 48 days
 - Cloud: 1~100%
- ASTER over RRV on 18 Feb, ASTER over LaCrau on 23 Feb, and ASTER over Baotou on 27 Feb, 2017 are acquired.
- Next: 22 Mar (RRV), 27 Mar (La Crau), and 31 Mar (Baotou)
- It is possible to request for ASTER observation for vicarious calibration.
- ASTER scenes over RadCalNet acquired in the past are also available, but we need to check the pointing angle and gain mode.



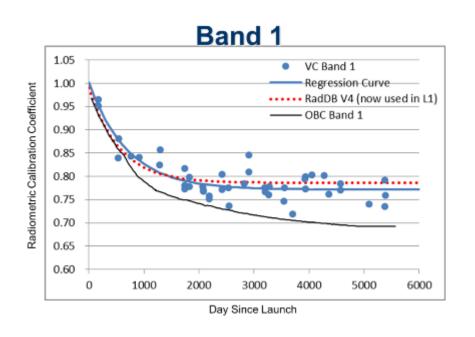
Backup Slides ...

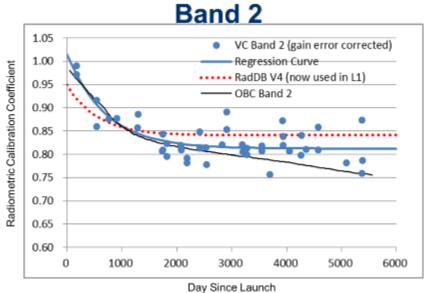


Gain Ratio and Gain Trend Check by Electrical Calibration



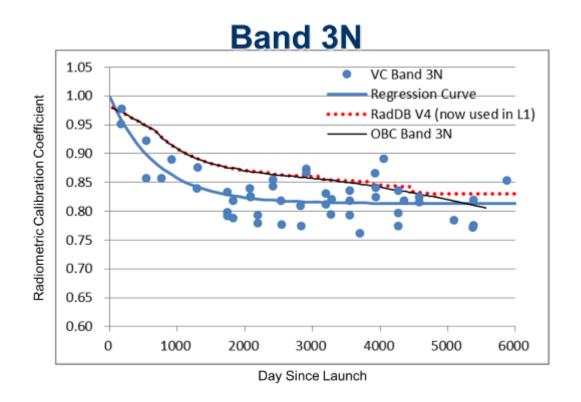
Band 3 (High/Normal))


Band 2 (High/Normal))



VNIR degradation curve

- Calibration for sensitivity degradation for band 1 and 2: Onboard calibration until Feb. 2014
- Band 1 and 2 switched from onboard calibration to vicarious and cross-calibration in Feb. 2014



VNIR degradation curve

 Calibration for sensor sensitivity degradation for band 3N: Onboard calibration "base"

ISS HISUI vicarious calibration

- Observation frequency of the ISS HISUI will be limited to a few times over each calibration site in one year because of its orbital characteristics.
- We can travel to northern and southern hemispheres only once a
 year for a field campaign for the vicarious calibration, and conditions
 for ground and sky would not be always suitable for the
 measurements.
- To address the issue, we have started to discuss the use of the automated calibration facilities such as the radiometric calibration network of automated instruments.

That is the RadCalNet.

ISS HISUI vicarious calibration (contd.)

- We have started to discuss the use of the automated calibration facilities as well as <u>an installation of the</u> <u>automated instruments in Australia.</u>
 - The installed system will be based on the instruments in Phenological Eyes Network (PEN, http://www.pheno-eye.org/index_e.html).
 - PEN is a network of ground observatories for long-term automatic observation of the vegetation dynamics (phenology), vegetation's optical properties (such as spectral reflectance), and the atmospheric optical properties (such as aerosol optical thickness) and has been started at 2003.
 - An observation protocol and processing methods for the radiometric calibration using the PEN instruments has being developed by AIST.
 - The Australia site as a calibration site in southern hemisphere
 - Easy access to from Japan
 - Good logistic support
 - "Slightly" good homogeneity (Not excellent)
 - The spectrally and spatially homogeneous and topographically flat area doesn't have to be so large, compared with RadCalNet, for the HISUI's ground spatial resolution (30m x 20m). However, the area that shows, at least, slightly good homogeneity is necessary for the smaller adjacency effect
 - Temporal-stability?
 - The temporal-stability of ground surface is necessary in the HISUI target size (almost 3x3 pixels: 60x60m). We will check it after the installation, and if the stability is not enough, we have to make a correction algorithm.
 - The candidate sites are the Pinnacle desert, Lake Lefroy and
 - We hope that Australia site is enough to use.....

Acknowledgement

 Prof. Jeffrey Czapla-Myers (Univ. Arizona) and Dr. Kurtis Thome (NASA GSFC) for support of US field campaign and providing information of automated calibration facilities.