

Activities of the FIDUCEO project: www.fiduceo.eu

Emma Woolliams

National Physical Laboratory

Project Pls: Jon Mittaz (NPL/Reading) and Chris Merchant (Reading)

ray**ference** 👤

Information in historical sensors

- How to get meaningful trend analysis?
- Recalibration
 (traceably) of
 historical sensors

FIDUCEO FCDRs (L1)

FCDR: fundamental climate data record (calibrated radiances) from which climate data can be derived

DATASET	NATURE	POSSIBLE USES
AVHRR FCDR	Harmonised infra-red radiances and best available reflectance radiances, 1982 - 2016	SST, LSWT, aerosol, LST, phenology, cloud properties, surface reflectance
HIRS FCDR	Harmonised infra-red radiances, 1982 - 2016	Atmospheric humidity, NWP re-analysis, stratospheric aerosol
MW Sounder FCDR	Harmonised microwave BTs for AMSU-B and equivalent channels, 1992 – 2016	Atmospheric humidity, NWP re-analysis
Meteosat VIS FCDR	Improved visible spectral response functions and radiance 1982 to 2016	Albedo, aerosol, NWP re- analysis, cloud, wind motion vectors,

How do we get metrological rigour in historical sensors?

Start from the measurement equation

Understand and quantify correlation

Use harmonisation approaches to recalibrate sensors

The measurement equation defines the relationship between counts and radiance (or reflectance)

$$R_E = a_0 + \frac{a_1 R_T - a_2 \dot{C}_T^2}{\dot{C}_T} C_E + a_2 C_E^2 + O$$

Each term in the measurement equation has associated uncertainty from one or more effects

We include a +0 to relate to errors due to approximations in the equation form

Capture in an effects table

Traceable uncertainty

- Traceability diagram, measurement centred
 - to organise
 - to document
- Branching structure reflects the nature of the problem
- Standardised "effects table" per "twig"
 - systematic documentation
 - this is codified into FCDR format
- Same for deriving higher-order products (CDRs)
 - uncertainty from L1 is simply one of the effects in L2

Error correlation

- Is different from effect correlation
- (Metrologists often forget to say "error")

- Matters in higher level processing:
 - Combining values from different channels
 - Combining values from different pixels

Error correlation: something in common

When it can be described explicitly

 Error between bands due to common blackbody calibration target

$$\tilde{L}_{\text{ICWT,A}} = \frac{\mathcal{E}_{A} c_{1,L}}{\lambda_{A}^{5} \left(\exp \left[c_{2} / \lambda_{A} T \right] - 1 \right)}$$

$$\tilde{L}_{\text{ICWT,B}} = \frac{\mathcal{E}_{\text{B}} c_{1,L}}{\lambda_{\text{B}}^{5} \left(\exp \left[c_{2} / \lambda_{\text{B}} T \right] - 1 \right)}$$

$$u\left(\tilde{L}_{\text{ICWT,A}}, \tilde{L}_{\text{ICWT,B}}\right) = \frac{\partial \tilde{L}_{\text{ICWT,A}}}{\partial T} \frac{\partial \tilde{L}_{\text{ICWT,B}}}{\partial T} u^{2} \left(T\right)$$

Rolling averages

$$\overline{C} = \frac{1}{2n+1} \sum_{i=-n}^{n} C_i$$

Moving simple average

Numerical approach to correlation analysis

$$r(x,y) = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \overline{y})^2}} = \frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{x_i - \overline{x}}{s_x} \right) \left(\frac{y_i - \overline{y}}{s_y} \right)$$

Correlation between noise in different channels for HIRS

Capture in an effects table

Table descriptor		Value / Expression	How this is provided	Notes	
Name of effect					
Affected term in measurement function					
Correlation type and form	within scanline [pixels]				
	from scanline to scanline [scanlines]	Correlatio • Random	n forms:		
	between orbits [orbits]	 Systematic / Rectangular 			
	Across time [e.g. days, months, years]	absolute • Triangula	r (simple a	verage)	
Correlation scale	within scanline [pixels]	_	•	.	
	from scanline to scanline [scanlines]	 Truncated Gaussian (weighted average and other effects) 			
	between orbits [orbits]	 Repeating truncated Gaussian (orbital effects) 			
	Across time	()	,		
Channels / bands	List channels and bands affected				
	Correlation matrix				
Uncertainty	PDF shape				
	Uncertainty units				
	Uncertainty magnitude				
Sensitivity Coefficient					

Harmonisation

$$R_E = a_0 + \frac{a_1 R_T - a_2 \dot{C}_T^2}{\dot{C}_T} C_E + a_2 C_E^2 + 0$$

Time (years)

Harmonisation model

- Model for spectral radiance measured by each sensor L = f(a; x, y, ...)
- Model for adjustment between pairs of sensors

$$K = h[f(\boldsymbol{a}_{S}; x_{S}, y_{S}, \dots)] - \begin{cases} h[f(\boldsymbol{a}_{t}; x_{t}, y_{t}, \dots)] \\ h[L_{\text{ref}}] \end{cases}$$

a (unknown) sensor calibration parameters

x, y, ... stimulus variables earth counts, temperatures, ...

 $L_{\rm ref}$ radiances from single reference sensor

K adjustment factor

Data with uncertainty information

Match-ups

- Reference radiance, or sensor-to-sensor
- Many (50 million +)
- Correlated!

Solving the harmonisation problem

Harmonisation problem is a non-linear regression, with correlated data and millions of match-ups.

Approaches:

- Orthogonal distance regression + Monte
- • Full errors-in-variables approach, takin

How do we get metrological rigour in historical sensors?

Start from the measurement equation

Understand and quantify correlation

Use harmonisation approaches to recalibrate sensors

Sharing the FCDR

- Full FCDR:
 - Uncertainty data by correlation structure

$$u^{2}(R_{E,ijk}) = c_{a_{0}}^{2}u^{2}(a_{0}) + c_{C_{E,ijk}}^{2}u^{2}(C_{E,ijk})$$

$$+c_{R_{ICT,jk}}^{2}u^{2}(R_{ICT,jk})$$

$$+c_{\delta R_{ICT,0}}^{2}u^{2}(\delta R_{ICT,0})$$

$$+c_{\delta R_{ICT,0,grad,jk}}^{2}u^{2}(\delta R_{ICT,0,grad,jk})$$

$$+c_{C_{ICT,jk}}^{2}u^{2}(C_{ICT,jk})$$

 Ensemble of realisations

 "Easy FCDR" with guidance

random

systematic and structured random

FIDUCEO has received funding from the European Union's Horizon 2020 Programme for Research and Innovation, under Grant Agreement no. 638822

Thank you!

www.fiduceo.eu

