

AERONET-OC: an overview

Giuseppe Zibordi

in collaboration with

Brent Holben, Ilya Slutsker, David Giles (NASA-GSFC) Frédéric Mélin, Jean-François Berthon (JRC-IES) Davide D'Alimonte (CENTRIA)

CEOS WGCV IVOS Workshop - October 20, 2010

Requirements for field data supporting cal/val programs

- 1. Traceable (with defined uncertainties quantified, when appropriate, through reference standards);
- 2. Globally distributed (ideally representing the wide range of geophysical conditions that remote sensing products are expected to observe);
- 3. Continuous (time-series of quality assured data are fundamental for assessing remote sensing products from successive space missions);
- 4. Cross-site consistent (uncertainties should be likely the same for all measurement sites and measurement conditions);
- 5. Accessible (availability, through suitable data policy, is a key element for any cal/val program).

AERONET-OC

AERONET – **Ocean Color** is a sub-network of the Aerosol Robotic Network (AERONET), relying on modified sun-photometers to support ocean color validation activities with highly consistent time-series of $\mathcal{L}_{WN}(\lambda)$ and $\tau_a(\lambda)$.

•Autonomous radiometers operated on fixed platforms in coastal regions;

•Identical measuring systems and protocols, instruments calibrated using a single reference source and method, and data processed with the same code;

•Standardized products of normalized water-leaving radiance and aerosol optical thickness.

G.Zibordi et al. A Network for Standardized Ocean Color Validation Measurements. Eos Transactions, 87: 293, 297, 2006.

- Calibration service performed by JRC (from 2002 to 2008) and GSFC (from 2009) for above-water radiometric measurements (comparisons between JRC and NASA have shown differences on average below 2%).
- 2. AERONET-OC instruments operated from fixed deployment platforms.
- 3. Meteorological satellites (i.e., METEOSAT, GOES) or computers.
- 4. AERONET-OC data handling system (part of AERONET).
- 5. Marine and atmospheric products (i.e., L_{WN} and $\tau_a(\lambda)$ at the 412, 443, 488, 531, 551, 667, 870 and 1020 nm nominal center-wavelengths).
- 6. Products accessibility through internet with a specified data policy.

AERONET-OC (2002-present)

Current sites

Planned sites
Potential sites

Current management and responsibilities

• NASA manages the network infrastructure (i.e., handles the instruments calibration and, data collection, processing and distribution within AERONET).

• JRC has the scientific responsibility of the processing algorithms and performs the quality assurance of data products.

• PIs are responsible for establishing and maintaining AERONET-OC sites.

The Measuring Protocol

300

- L_{T} : Total radiance from the sea
- L_i: Sky-radiance

$$L_{W}(\varphi,\theta,\lambda) = L_{T}(\varphi,\theta,\lambda) - \rho(\varphi,\theta,\theta_{0},W)L_{i}(\varphi,\theta',\lambda)$$
$$L_{W}(\lambda) = L_{W}(\varphi,\theta,\lambda)C_{\Im Q}(\lambda,\theta,\varphi,\theta_{0},\tau_{a},IOP,W)$$
$$L_{WN}(\lambda) = L_{W}(\lambda)\left(D^{2}t_{d}(\lambda)\cos\theta_{0}\right)^{-1}C_{f/Q}(\lambda,\theta_{0},\tau_{A},IOP)$$

Consistency of L_{WN}

G.Zibordi, F. Mélin, S. B. Hooker, D. D'Alimonte and B. Holben. An autonomous above-water system for the validation of ocean color radiance data. *IEEE Transactions in Geoscience and Remote Sensing*, 42:401-415, 2004.

AERNOTE-OC deployment Requirements

- > Fixed deployment platforms to allow for accurate pointing
- >Relatively deep waters to minimize bottom perturbations
- Selected deployment configurations to minimize superstructure perturbation
- Away from land to minimize adjacency effects in remote sensing data

G.Zibordi, B.Holben, I.Slutsker, D.Giles, D.D'Alimonte, F.Mélin, J.-F. Berthon, D. Vandemark, H.Feng, G.Schuster, B.Fabbri, S.Kaitala, J.Seppälä. AERONET-OC: a network for the validation of Ocean Color primary radiometric products. *Journal of Atmospheric and Oceanic Technology*, 26, 1634-1651, 2009.

The observed surface area should be at a distance from the main superstructure larger than the height of the superstructure itself.

S. B. Hooker and G. Zibordi. Platform perturbation in Above-Water Radiometry. *Applied Optics*, 44, 553-567, 2005.

Quality Assurance

AERONET-OC products are classified at different quality assurance levels:

- Level 1.0 -> $L_{WN}(\lambda)$ determined from complete measurement sequences.
- Level 1.5 -> Cloud screened aerosol optical thickness data exist;
 - Replicate sky and sea radiance measurements exhibit low variance;
 - Empirical thresholds are satisfied (e.g., exceedingly negative values or high reflectance in the near infrared);
- Level 2.0 -> Pre- and post-deployment calibration coefficients exhibit justifiable differences within 5% (typically within 1%);
 - L_{WN}(λ) spectral shapes are consistent based on statistical approaches;
 - A final spectrum-by-spectrum screening is passed.

Fully quality assured data typically include 10-15% of the initial measurements

G.Zibordi, B.Holben, I.Slutsker, D.Giles, D.D'Alimonte, F.Mélin, J.-F. Berthon, D. Vandemark, H.Feng, G.Schuster, B.Fabbri, S.Kaitala, J.Seppälä. AERONET-OC: a network for the validation of Ocean Color primary radiometric products. *Journal of Atmospheric and Oceanic Technology*, *26*, *1634-1651*, 2009.

Uncertainties

Source	L _{WN}				
	412	443	488	551	667
Absolute calibration	2.7	2.7	2.7	2.7	2.7
Sensitivity change	0.4	0.2	0.2	0.2	0.2
Correction	1.6	2.0	2.8	2.9	1.9
t_d	1.5	1.5	1.5	1.5	1.5
ρ	1.8	1.3	0.7	0.6	2.5
W	1.1	0.8	0.4	0.4	0.4
Environmental effects	3.1	2.1	2.1	2.1	6.4
Quadrature sum	5.1	4.5	4.7	4.7	7.8

~5% (400-600 nm)

G.Zibordi, B.Holben, I.Slutsker, D.Giles, D.D'Alimonte, F.Mélin, J.-F. Berthon, D. Vandemark, H.Feng, G.Schuster, B.Fabbri, S.Kaitala, J.Seppälä. AERONET-OC: a network for the validation of Ocean Color primary radiometric products. *Journal of Atmospheric and Oceanic Technology*, 26, 1634-1651, 2009.

Examples of AERONET-OC Sites

N= 775 GDLT

Site: AAOT Location: Northern Adriatic Sea Water type: Case-1/Case-2 Period: 2002-present

Site: GDLT Location: Northern Baltic Proper **Period:** 2005-present (summer)

Zibordi, G., Holben, B., Slutsker, I., Giles, D'Alimonte, D., Mélin, F., Berthon, J.-F., Vandemark, D., Feng, H., Schuster, G., Fabbri, B. E., Kaitala, S., Seppälä, J. (2009). AERONET-OC: a network for the validation of Ocean Color primary radiometric products. J. Atmos. Oceanic Technol., 26, 1634-1651.

Band-Shift Correction

AERONET-OC data are produced at fixed center-wavelengths not necessarily matching those of the satellite sensors of interest.

Current band-shift correction, not included in the operational processing, is applied for several sites relying on the following scheme:

$$L_{WN}(\lambda) = L_{WN}(\lambda_0) \frac{E_0(\lambda)}{E_0(\lambda_0)} \frac{f'(\lambda)}{Q_n(\lambda)} \frac{f'(\lambda)}{f'(\lambda_0)} \frac{D_b(\lambda)}{a(\lambda) + b_b(\lambda)} \frac{a(\lambda_0) + b_b(\lambda_0)}{b_b(\lambda_0)}$$

Where synthetic values at λ are computed from values at λ_0

- 1. assuming λ is close to λ_0 so that $f'(\lambda)/Q(\lambda) \times Q(\lambda_0)/f'(\lambda_0) \approx 1$;
- 2. determining a and b_b using empirical regional algorithms relying on $L_{WN}(\lambda)$ ratios.

G.Zibordi, J.-F. Berthon, F. Melin, D.D'Alimonte and S. Kaitala. Validation of satellite ocean color primary products at optically complex coastal sites: northern Adriatic Sea, northern Baltic Proper and Gulf of Finland. *Remote Sensing of Environment* (in press), 2009.

Validation of Satellite Products (MODIS)

G.Zibordi, J.-F. Berthon, F. Melin, D.D'Alimonte and S. Kaitala. Validation of satellite ocean color primary products at optically complex coastal sites: northern Adriatic Sea, northern Baltic Proper and Gulf of Finland. *Remote Sensing of Environment*, in press, 2009

Validation of Satellite Products (MERIS)

Vicarious Calibration (SeaWiFS)

F.Mélin and G.Zibordi. Vicarious calibration of ocean color data using coastal sites. *IEEE Transactions in Geoscience and Remote Sensing*, Applied Optics, March 2010.

$\begin{array}{l} \mbox{Minimization of systematic} \\ \mbox{errors in } \mathcal{L}_{WN} \end{array}$

Match-up criteria

i. satellite and *in situ* data collected within +/-2 h;

ii. satellite viewing angle lower than 56
and sun zenith lower than 70 degrees;
iv. 3x3 pixels centered at the site free
of cloud and glint contamination;
v. variation coefficient of the 3x3
pixels lower than 20%

Principles

D.D'Alimonte, G.Zibordi and F.Mélin. A statistical method for generating cross-mission consistent normalized water-leaving radiances. *IEEE Transactions in Geoscience and Remote Sensing*, 46, 2008.

Strengths and Weaknesses

Strengths:

- 1. Use of standardized instruments, calibration and data processing.
- 2. Continuous and autonomous data collection with near-real time processing and open access to products through a specified data policy.
- 3. Relatively small costs to equip and maintain sites (on the average in the range of 20-50 KUS\$ per year).

Weaknesses:

- 1. Execution of sequential measurements at different time for different center-wavelengths, which increases the *inter-channel uncertainty* of $\mathcal{L}_{WN}(\lambda)$ with respect to the case of measurements performed at the same time at all center-wavelengths.
- 2. Limited number of spectral channels.
- 3. Lack of operational tables for the determination of viewing angle and f/Q corrections, applicable to optically-complex coastal waters.

Concluding remark

- AERONET-OC satisfies the major requirements of traceable, globally distributed, continuous, cross-site consistent and accessible measurements.
- AERONET-OC, likely expanded to include sites representative of additional water types, is a major source of data for satellite ocean color validation and development activities

Aside the NASA-GSFC AERONET Team, acknowledgment is due to ESA for contributing to support the AAOT, GDLT and Gloria sites.

