

La Crau - ROSAS

(RObotic Station for Atmosphere and Surface)

P. Henry - A. Meygret

cnes

The calibration site

- Situation: La Crau
 - Iocated South-East of France (lat. = 43.56°; long. = 4.86°)
 - rather good surface stability (dry area with small rocks)
- Calibration historic
 - □ first CNES campaign in march 1989 (coop. with LOA and INRA)
 - □ 9 SPOT 1 calibrations (1989 \Rightarrow 1993)
 - In 1994 : decision to develop an automatic calibration station

CIMEL Instrument (derived from AERONET one)

Filters wheel : 8 filters + 1 dark plate
2 collimators and 2 detectors: Si and InGaAs

#	1	2	3	4	5	6	7	8	9	10	11	12	13
λ(nm)	870Si	1600 InGaAs	670Si	1020 InGaAs	550Si		440Si		380Si	870InGaAs	1020Si		937Si

Maintenance including calibration once a year

CORS Measurements protocol

-**X**

Sun » protocol

- Direct sun view : extinction measurement
- « Principal plane » protocol
 - Sky radiance : measurements in the principal plane
- Almucantar » protocol
 - Sky radiance : complete azimuth rotation for $\theta v = \theta s$
- Ground » protocol (specific to this prototype)
 - \Box Ground radiance measurements for different θv
- ⇒ Automatic and continuous acquisition : first morning acquisition air mass<5 - last evening acquisition air mass>5
- ⇒ Complete measurement set every 90 min. : SUN + ALM + PPL + GND (1st elevation) + SUN + GND (2nd elevation) +...+ GND (12th elevation) + SUN
- \Rightarrow Transmitted to CNES every evening via a GSM link

CCNES Instrument calibration (1/4)

Irradiance calibration

based on the Bouguer-Langley extinction law (all wavelength)

 $X_k = \frac{A_k}{G_{uk}} G_{uk} I_k$ (direct sun viewing)

 $I_k = I_{0k}^* (d/d_0) * exp(-m.\tau_k)$

 A_k = instrument irradiance calibration coefficient

CORS Instrument calibration (2/4)

Irradiance calibration performed every day : A_k monitoring

CE

P. Henry 6/14

CCNES Instrument calibration (3/4)

Radiance calibration

based on Rayleigh scattering for 380, 440, 550 nm bands

 $X_{k} = \frac{B_{k}}{B_{k}} G_{kk} L_{k}$ (sky radiance in the principal plan)

 L_k estimated using a radiative transfert code

 B_k = instrument radiance calibration coefficient

 $\square \Omega = B_k/A_k$: instrument solid angle (wavelength independent)

⇒ Computation of the radiance calibration coefficient for the other spectral bands (red, NIR and SWIR)

CCOES Instrument calibration (4/4)

Rayleigh scattering calibration and Ω estimation

Ground reflectance

Shadow mask of the pole

CEOS WGCV IVOS Workshop – Ispra – 18-20 October 2010

Ground reflectance

Adjustment of a BRDF model (iterative filtering)

ROSAS ground reflectance (550nm)

Estimated BRDF model (550nm)

CEOS WGCV IVOS Workshop

SPOT4 calibration

Date	B1 (green)	B2 (red)	B3 (NIR)		
07-Nov-05	0.720	0.819	0.771		
13-Mar-06	0.752	0.764	0.763		
23-Mar-06	0.801	0.826	0.836		
03-Apr-2006	0.770	0.824	0.786		
02-Nov-06	0.732	0.822	0.794		
13-Nov-06	0.751	0.842	0.796		
22-Nov-06	0.729	0.807	0.789		
Average	0.751	0.815	0.791		
Standard deviation	0.026	0.023	0.022		
Official cal. (01/06/06)	0.743	0.821	0.809		
Discrepancy	+1.1%	-0.7%	-2.2%		

© Low scattering over 7 measurements

- © Good consistency with the official calibration
- No calibration for the SWIR band

Present status

ROSAS : operational for SPOT calibration

- one calibration campaign per year
- Successfully tested with a set of Formosat 2 images

Development of an operational software for ROSAS data archiving, testing and processing

- industrial development
- □ friendly interfaces, calibration results traceability, expertise toolbox
- acceptance : October 2010

Improve the calibration method :

- \Box H₂O content using the 937nm band
- extend the calibration to the SWIR domain
- Transfer the ROSAS software to the operational calibration team
- Calibrate Pleiades using ROSAS during in-flight commissioning
- Try to install a 2nd ROSAS system on a new calibration site
- Study a ROSAS evolution for the Sentinel-2 in-flight calibration