## Results of Tuz Gölü comparison: Surface based measurements

CEOS WGCV IVOS workshop, Ispra 18th-20th October 2010

#### Irina Behnert, National Physical Laboratory



## Agenda

- Tuz Gölü new CEOS reference standard test site
- CEOS Key Comparisons
- 2009 results
- Summary
- Conclusions



#### Reference standard test sites

Infrared, Visible and Optical Sensors (IVOS) Sub-group of the CEOS established 8 ground targets, LandNet 2007 Need for a Global,Integrated Network of Calibration Sites



#### Tuz Gölü (= Salt Lake in Turkish)



The third largest lake in Turkey Surface 1 600 km<sup>2</sup> 900 m altitude Dries during July-August

#### Salt water springs 1.5 m

Easy access Cycling & walking, no traces







Site characterisation 2008



2 teams: NPL,UK TU,Turkey

#### CEOS pilot Comparison 2009

#### 5 teams from: NPL, DLR, TU, CNES, ONERA



CEOS Key Comparison 2010

**Tuz Gölü** 38 50°N 33 20°E

10 teams,4 continents



#### Site characteristics, August 2008 & 2009



#### Surface reflectance factor VNIR > 0.4 --- OK SWIR < 0.2 --- low

0.4 2008 0.35 0.3 2009 0.25 AOT 0.2 0.15 0.1 0.05 400 500 600 700 800 900 1000 Wavelength (nm)

Aerosol optical thickness AOT(550) > 0.15  $\alpha_{440-870} = 0.96 - 1.70$ 



#### CEOS comparisons 2009 & 2010



## Why CEOS Land comparisons ?

To define the "best practice" to characterise a LandNet site and to report the uncertainties according to the QA4EO



Radiometric site characterisation





Atmospheric characterisation





Sampling techniques for high and medium resolution in flight sensors



#### Activities according to the Land protocol

#### Laboratory

Cross-comparison of radiometers against a standard source Calibration of participants reference panels (2010 only)

#### <u>Field</u>

Cross-comparison of radiometers against a reference panel Cross-comparison of participants' reference panels (2010 only) Sampling same points of 100\*300 m (2009) & 50\*3 m (2010) Site surface characterisation over: 100\*300 m & 1 km\*1 km BRDF using GRASS (NPL) Atmospheric characterisation

National Physical Laboratory

## Laboratory radiometric calibration 2009 Type A + Type B standard uncertainty NPL





Type B major source of uncertainties



## Type A std uncertainty, performance/noise



11

Laboratory & In field characterisation of participants' reference panels, 2010





## Laboratory & In field panels calibration 2010 What RF panel value to use further ???



# Cross-comparison of radiometers against the reference panels in field

26<sup>th</sup> Aug 2009 cirrus Changing illumination conditions not ideal for reference panels calibration

27<sup>th</sup> Aug 2009 good day Cross comparison against NPL panel





## 26<sup>th</sup> August 2009



DLR, TU & ONERA data were corrected using the gains from 23<sup>rd</sup> August DLR radiance calculated with different software, different corrections Standard uncertainty recalculated using GUM



#### Site surface characterisation 2009





|       | Instrument    | Software           | Panel calibration                                           |
|-------|---------------|--------------------|-------------------------------------------------------------|
| ONERA | ASD, 2005     | ASD software       | Diffuse illumination                                        |
|       | Type A ~ 0.1% |                    |                                                             |
|       | 400 – 1800 nm |                    |                                                             |
| DLR   | ASD, 2005     | DLR software       | Diffuse illumination                                        |
|       | see ONERA     | different Radiance |                                                             |
|       |               | VNIR RF 6% lower   |                                                             |
| TU    | ASD, 2008     | ASD software       | Bidirectional illumination                                  |
|       | Type A < 0.5% |                    | for $\theta_s = 47^{\circ}, 37^{\circ}, 30^{\circ}$ , nadir |
|       |               |                    | RF is 5% higher                                             |



## Conclusions

- Differences in the RF values of the site were the result of software and panel calibration methodologies used
- 2010 CEOS Key comparison results will help in the further understanding of the sources of uncertainties related to the "surface measurements"
- It is important to report the uncertainties associated with the measurements and the traceability of the calibration

