Sentinel-3 - Uncertainty estimation Following user requirements and in line with QA4EO principles the Sentinel-3 products will be given with the uncertainty per pixel. The methods to retrieve the uncertainties are not yet harmonised (different algorithm, different approach) #### Level 2 products #### **OLCI:** - Ocean colour products: Water leaving reflectance, Chl Case 1 Uncertainty implemented and tested - Ocean colour products: NN Uncertainty implemented and tested - Land Chlorophyll Index (OCTI) Uncertainty being implemented - Fapar: uncertainty algorithm under development #### **SLSTR:** - SST : generic approach - LST: generic approach based #### SYN: Surface reflectance: - Uncertainty implemented and tested # **OTCI Uncertainty Measurements** Quantification of uncertainties due to: Soil background; Varying view and sun angle configurations Atmospheric influences Sensor calibration noise; - Based on law of propagation of uncertainty (Muira et al (2000) and QA4EO recommendations - Estimates standard uncertainty of OTCI from standard uncertainties of input reflectances (first order Taylor series approximation) Uncertainties on OTCI due to view angle | Error source | Min error | Max error | |------------------|-----------|---------------| | Acquisition | 0.002 | 0.0424 | | noise | 0.002 | 0.0124 | | Illumination and | 0.0000 | 0.0745 (70/) | | view geometry | 0.0008 | 0.0745 (~ 7%) | | Soil background | 0.0003 | 0.0034 | # **OLCI L2** water leaving radiance uncertainty **Uncertainty source**: Currently Level 1 radiometric noise **Uncertainty output**: Pixel-by-pixel Rw uncertainty from atmospheric correction **Method**: Propagate normal-law L1 uncertainty by 1st order Taylor series expansion (QA4EO framework) Analytical propagation through OLCI clear water atmospheric correction (fast implementation) Validation: Method successfully validated on MERIS RR **Requirements**: Level1 uncertainty must be known through its full spectral variance-covariance matrix, and not only SNR (~ diagonal term) $$C = \begin{pmatrix} \sigma_{\lambda}^2 & \sigma_{\lambda,779} & \sigma_{\lambda,865} \\ \sigma_{\lambda,779} & \sigma_{779}^2 & \sigma_{779,865} \\ \sigma_{\lambda,865} & \sigma_{779,865} & \sigma_{865}^2 \end{pmatrix}$$ $\sigma_{ ho_w(443)} pprox 2.5 \ 10^{-4}$ for most of the scene (1% relative uncertainty) Higher values on specifics pixels and regions **Limitations**: If OLCI radiometric performance is as good as MERIS RR, the main driver will be physics: there is a need to add modelling uncertainty (aerosol, radiative-transfer, etc.), to be assessed by other means ## **SYN** surface reflectance Uncertainty Measurements ## **SYN** surface reflectance Uncertainty Measurements The error in surface reflectance at each waveband is calculated as the sum of errors due to the error in AOD estimation $\Delta \tau$, sensor noise $\Delta sens$, and estimated error in the radiative transfer model ΔRT . For each channel, the uncertainty is given by: $$\Delta R_{surf} = \left(\Delta_{\tau}^2 + \Delta_{sens}^2 + \Delta_{RT}^2\right)^{0.5}$$ ## - Aerosol uncertainty given : $$\Delta_{\tau} = \frac{\delta R_{surf}}{\delta \tau} \Delta \tau$$ Where $\Delta \tau = k \sqrt{\frac{E_{min}}{a}}$ $$\Delta \tau = k \sqrt{\frac{E_{\min}}{a}}$$ - Emin is the value where the AOT minimise the error metric *Emod following optimisation procedure* - a is the curvature term of a a parabolic fit to Emod. - The term k is estimated to be 1.58, but should be tuned by post-launch calibration. #### Sensor noise Error in surface reflectance $\Delta sens$ due to instrument noise in the TOA measurement $\Delta sens$: $$\Delta_{sens} = \frac{\delta R_{surf}}{\delta R_{TOA}} \Delta'_{sens} \approx \frac{\Delta'_{sens}}{T_{O_3} T(\theta_s) T(\theta_v)}$$ Estimate of the channel-dependent instrument noise ∆ 'sens should include the combined effects of quantisation and calibration error. #### **Error in RT model:** the error in the radiative transfer model ΔRT includes the net effect of numerical approximation of atmospheric radiative transfer variation and composition (column ozone, water vapour and aerosol model) from reality. A value of 0.005 should be used as default. # **AATSR LST pixel uncertainties** $$LST = a_{f,i,pw} + b_{f,i}(T_{11} - T_{12})^n + (b_{f,i} + c_{f,i})T_{12}$$ Pixel uncertainty budget is a combination of all the uncertainty components of the LST retrieval algorithm: - Systematic uncertainty of forward model - Radiometric noise - Surface state - Atmospheric state - Geolocation uncertainty - Model fitting uncertainty - Uncertainty due to cloud contamination (under development) ### **Surface state** $e \downarrow f$ = uncertainty due to fractional vegetation cover $$S\downarrow sfc12 = (\partial F/\partial f)12 e \downarrow f12$$ ### Radiometric noise $e \mathcal{I} \mathcal{T} \mathcal{I} 11 = NE\Delta \mathcal{T} \mathcal{I} 11 = 0.05 \text{ K}$ $e I T I 12 = NE\Delta T I 12 = 0.05 K$ $S \downarrow noise \uparrow 2 = (\partial F/\partial T \downarrow 11) \uparrow 2 e \downarrow T \downarrow 11 \uparrow 2 + (\partial F/\partial T \downarrow 2)$ ## **Atmospheric state** $e \mathcal{I} p w$ = uncertainty due $S\downarrow atm12 = (\partial F/\partial pw)12 e \downarrow pw$ ### Geolocation The geolocation of the image data may be up to 0.5 km away from the 'true' instrument pixel coordinates Estimate the probability that the underlying biome is correctly assigned ## **Model fitting** For each biome-diurnal condition the set of retrieval coefficients is derived by minimizing the model fitting error (ΔLST) # **Uncertainties per Pixel - Conclusion** - Sentinel-3 Level 2 products will be given with the uncertainties per pixel - The algorithm are not at the same level of maturity - The approaches are different according to algorithm - Currently there is no uncertainties at Level 1 (constant value) - On progress (see work on Sentinel-2 by NPL/ESA) - Validation of the uncertainties! - Good start but we need to improve