

Korea Aerospace Research Institute 115 Gwahangro, Yuseong-gu Daejeon, 305-333, Korea

Image data Quality for KOMPSAT-3

June 6, 2014

DongHan Lee^{a,b}, MinA Kim^a, DooChun Seo^a, JaeHeon Jung^a, KyeongMi Jun^a

Korea Aerospace Research Institute (KARI)
 USGS EROS Visiting Scientist

Agenda

- Calibration and Validation in KARI
 - ✓ Image data Quality for User in KARI
 - ✓ Performance of KOMPSAT-3 after Cal/Val
 - ✓ Additional Cal/Val items for normal period
- KOMPSAT-3 Image data Quality (IQ) for Normal operation
 - ✓ IQ Checking & Monitoring
 - ✓ Quality checking for KOMPSAT-3 image data (Draft)
- Issues and Discussion

Mom~! & Dad~! of Artificial Remote Sensing Satellite

Calibration & Validation in KARI CEOS WGCV IVOS-26 (2014) Korea Aerospace Research Institute (KARI) -4-Satellite data Calibration and Validation team (SCV)

Image data Quality for User in KARI

- Image data Quality for Users
 - There is a technical gap between the requirement for manufacturing the satellite and the e requirement for the image data quality for Users.
 - Need & Define the item and the quantitative value for the image data quality for Users
 - Almost Users have eyes without the concept of the quantitative image data quality~!
 - There are Two kind of the Quality items for Users;
 - Representative items: MTF, SNR, GSD, Absolute radiometric Gain/Offset, Radiometric resolution, etc.
 - Different valued items per each image data: Noises, etc.
- With only technology of manufacturing of Satellite and Sensor, the requirements of Users cannot be complied.
 - Periodical monitoring of the image data Quality
 - Optimal ground processing for the Satellite and the Sensor
 - Continually talking and feed back with Users

Performance of KOMPSAT-3 after Cal/Val

	Key Item	Requirement Value	Validated Value	Constraint
	SNR	100	>> 100 (TDI 64)	
	MTF	8%(PAN) 12%(MS)	Across: 8~10% (TDI 64) Along: 6~8% (TDI 64) > 19% (MS)	Strip imaging Level 0
CVP I	GSD	0.7m(PAN) 2.8m(MS)	0.7m (PAN)	Strip & Nadir imagi ng
Pointing accuracy		1.2km	Across: 90m Along: 1 sec	Strip imaging
Location accuracy		70m CE90	< 70m CE90	With POD & PAD Strip imaging
	MTF after MTFC	13%(PAN) 19%(MS)	> 20% (PAN)	Level 0
CVP II	Registration	0.5pixel RMS (MS)	0.5pixel RMS (MS)	Strip imaging
	Ortho-image accuracy	3.5m CE90 (Horiz ontal)	3.5m CE90 (Horizontal)	Strip imaging

Additional Cal/Val items during Normal period

ltem	Title	Content	Statu s
Monitoring FMC T emp	Monitoring the Stability of the FMC (F ocus Mechanism Controller) Temperat ure	Star imaging per 2~3 month RER, FWHM, MTF	on goin g
Resampling meth od	Resampling method for KOMPSAT-3	Optimal Resampling method for KOMPSAT-3 to ke ep the Spatial Quality	on goin g
Pixel burst	On Only MS	Develop, Test and Apply the de-noising algorithm of it	Done
Port Difference	On Only MS	Develop, Test and Apply the de-noising algorithm of it	Done
Center Pattern Dif ference	Different noise between each CCD De tector	After reducing Compression noise, and updating R NUC and De-noising, the Center difference has be en reduced.	Done
RNUC (Residual NUC)	Non-linearity behind DN 1500	New RNUC table has been updated in the Processing system.	Done
Compression noi se	Many Compression noise in MS with Compression ratio '5.5'	Updated by PAN '5.5' and MS '3'	Done

KOMPSAT-3 Product (Image data) Quality (IQ) for Normal operation

IQ Checking and Flow

- Regularly Processing & IQ Checking by Operator
- Regularly Monitoring by Cal/Val team
- If any IQ issues, report to OCCB by Cal/Val team
- According to the OCCB procedure, carrying out it

Monitoring and Additional Cal/Val

- Monthly meeting for KOMPSAT-3 Operation and Status
 - ✓ Also checking and talking the Product (Image data) Quality.
- Operational Configuration Control Board (OCCB)

CEOS WGCV IVOS-26 (2014)

Korea Aerospace Research Institute (KARI)
Satellite data Calibration and Validation team (SCV)

Quality Checking for K3 Product (Draft)

QR (Quality Report) for KOMPSAT-3 Image Data

QR No.		QR-K3-20130314-0001										
User No.		SI										
Product ID							_19891327_	_L1R				
S/W Vers	ion		S. V1.		306.00	01						
Processi	ng Date	201	3-03-0)6			Processe	d By	KΑ	RI, Gil-Dong	Hong	
Anomalies Image		Band (○- Level 2, ●- Level 3)			Constraint (TBR)			Check	Comments			
7	Anomalies image		G	IS R	N	PAN	Level 1	Level	2	Level 3	• Hook	
Dynamic	range						> 1000	500-10	00	< 500		
Saturatio	n						< 1%	1-2%	ı	> 2%		
	Blooming)						~2	3~10		> 10		
Equalizat (NUC)	tion: inter-Detector						20DN	20~50[N	> 50DN		
	diagonal, horizontal, vertical, First pixel						none	isolate noise		recurrent noise		
Pattern noise	Center Pattern						none	isolate noise		recurrent noise		
	Pixel burst (Port difference)						20DN	20~50[N	> 50DN		
Compres	sion noise						none	isolate blocks		recurrent blocks		
Registrat	ion (MS-MS)						< 0.5	0.5-0.7	'5	> 0.75		
Registrat	ion (MS-PAN)						< 0.5	0.5-0.7	'5	> 0.75		
Location	accuracy						< 70m	70-150	m	> 150m		
Commen	Comments / Image chip											
Review D	Pate						Reviewed By					
Review C	comments											

QR (Quality Report) is the Internal rep ort in KARI to moni tor the KOMPSAT-3 Product (Image d ata) Quality.

Quality Checking for K3 Product (Draft)

Anomalies Image		Constraint (TBR)			
		Level 1	Level 2	Level 3	
Dynamic range		> 1000	500~1000	< 500	
Saturation		< 1%	1~2%	> 2%	
Abnormal Pixel (except Blooming)		~2	3~10	> 10	
Equalization: inter-Detector (NUC)		20 DN	20~50 DN	> 50 DN	
Datta wa wa isa	diagonal, horizontal, vertical, First pixel	none	isolated noise	recurrent noise	
Pattern noise	Center Pattern	none	isolated noise	recurrent noise	
	Pixel burst (Port difference)	20 DN	20~50 DN	> 50 DN	
Compression noise		none	isolated noise	recurrent noise	

^{*} Constraint - Level 1: Accepted, Level 2: To be Proposed, Level 3: Rejected

Isolated & Recurrent (TBR)

	Isolated	Recurrent
Number	2~4	>= 5
Area of 1 part	100x100	100x100
DN difference	20~50 DN	> 50 DN

Level 1: Accepted

Level 2: To be Proposed

Level 3: Rejected

^{*} Cloud, Water, Snow area: to be take off for constraints: saturation, compression, NUC and pattern noise

^{*} In case of Compression noise, there is no limitation of the number of the compressed region for the Level 2.

(IQ) Dynamic Range

A a a a a a line la a a a	Constraint (TBR)			
Anomalies Image	Level 1	Level 2	Level 3	
Dynamic range (0 ~ 16363)	> 1000	500~1000	< 500	

K3_20130110191806_03480_18511222_L1R

K3_20130310175432_04341_19881329_L1R

- Linear 2% in Scroll window in ENV I (TBR)
 - \checkmark DN(Max Min)
 - √ "3500" = 4224 704
- Except the next area
 - ✓ Uniform bright area
 - ✓ Forest, Farm, Desert, Ice, M ountain, Big river, Big lake, e tc.
 - ✓ Snow, Cloud, Ocean, etc.
- Only ROI requested by User
- User want a sufficient dynamic ra nge in the satellite radiometric re solution.
 - ✓ KOMPSAT-3: 14bit
 - √ 0 ~ 16383
 - ✓ Not stretching in the Proces sing system

(IQ) Saturation

A a a a a a libra luca a a	Constraint (TBR)			
Anomalies Image	Level 1	Level 2	Level 3	
Saturation	< 1%	1~2%	> 2%	

MS Green band: Saturation in SF (2012.06.05)

K3_20130310175432_04341_19881329_L1R_B

- Basically, >16383 DN, but
 - ✓ The Saturated area has a width of DN after the Processin g system
- Except the next area
 - ✓ Snow, Ice, Cloud, Salt desert, etc.
- Only ROI requested by User
- User never want a saturated image data product.
 - ✓ Several exposures of Satellite be needed according to the e imaging area.
 - ✓ KOMPSAT-3 has Two TDI stages.
 - ✓ KOMPSAT-3 data collection planning system has a Radia nce (Reflectance) calculating module in Worldwide.

(IQ) Abnormal pixel (except Blooming)

An amplica Impaga	Constraint (TBR)			
Anomalies Image	Level 1	Level 2	Level 3	
Abnormal pixel (No. of Part)	~2	3 ~ 10	> 10	

Speckle noise in MS

- Abnormal DN of any Pixel
 - √ (ex.) Speckle noise
 - ✓ Number of Abnormal parts in a image data product
 - ✓ Not number of abnormal pixels
- Except Blooming
 - ✓ But, in case of Big and Large blooming, KARI Cal/V al team will inspect it.
 - √ (ex) Left bottom figure.
 - √ (TDI CCD)
- User don't want the Abnormal pixel
 - ✓ User needs the location of the Abnormal pixel.

20130513031053_05267_024_P7
Large Blooming by the direct solar incidence reflection

(IQ) Equalization: inter-Detector (NUC)

Anomalias Imaga	Constraint (TBR)			
Anomalies Image	Level 1	Level 2	Level 3	
Equalization (NUC)	20 DN	20~50 DN	> 50 DN	

K3_20130103212714_03379_17041356_L1R_P

- At less than around 1500DN, NUC is NOK.
 - ✓ Different DN range per each Band
 - ✓ Lake, Ocean, River, Dark Shadow, etc.
- RNUC module in IRPE PMS has been Ready
 - ✓ Updated RNUC table
- One of the main purpose of the High resolution image e data product is 'detecting and recognizing' on a La nd area.
 - ✓ but, User also want clear image in the coast an d lake area.

K3_20130103212714_03379_17041356_L1R_P

Updated RNUC table (Additional Cal/Val item)

CALLOF_121115181118_02661 (PAN)

Pattern noise (Diagonal, Horizontal, Vertical, First pixel)

Anamaliaalmaaa	Constraint (TBR)			
Anomalies Image	Level 1	Level 2	Level 3	
Pattern noise (Diagonal, etc.)	none	isolated	recurrent	

	Isolated	Recurrent
Number	2~4	>= 5
Area of 1 part	100x100	100x100
DN difference	20~50 DN	> 50 DN

Diagonal noise in MS Green

Vertical, Horizontal, First pixel noise in PAN

- KOMPSAT-3 Radiometric resolution is '14 bit'
- The background noise level is '15 DN'
- User may be difficult to determine any information by the pattern noise.
 - ✓ A rough de-noising may reduce and remove any information.
 - ✓ So, the optimized de-noising for KOMPSAT-3 has been applied.

Pattern noise (Center pattern difference)

A. a. a. a. libra langua	Constraint (TBR)			
Anomalies Image	Level 1	Level 2	Level 3	
Pattern noise (Center pattern)	none	isolated	recurrent	

	Isolated	Recurrent
Number	2~4	>= 5
Area of 1 part	100×100	100x100
DN difference	20~50 DN	> 50 DN

- The noise on Each detector is diff erent
 - ✓ Pattern noise
 - ✓ Compression noise
 - ✓ RNUC
- User don't want any noise
 - ✓ The optimized de-noising fo r KOMPSAT-3 has been applied.

Pattern noise (Pixel burst, Port difference)

A no malia a luca a	Constraint (TBR)		
Anomalies Image	Level 1	Level 2	Level 3
Pattern noise (Pixel burst)	none	isolated	recurrent

	Isolated	Recurrent
Number	2~4	>= 5
Area of 1 part	100x100	100x100
DN difference	20~50 DN	> 50 DN

Pixel burst in K3 20130205112349 03855 02531233 L1R B

- Only MS band
 - ✓ Width of Pixel burst is '50 pixel'
 - ✓ Width of Port Diff is '300~1500'
 - ✓ DN difference is '20~50 DN'
- User don't want any noise
 - ✓ The optimized de-noising for KOMPSAT-3 has b een applied.

Port difference in K3_20130103212714_03379_17041356_L1R_B

Profile of Port difference

Reducing Pixel burst (Additional Cal/Val item)

CALLOF_20120616032915_00432_024 (MS Green)

Before.

After.▶

CEOS WGCV IVOS-26 (2014)

Korea Aerospace Research Institute (KARI)
Satellite data Calibration and Validation team (SCV)

Compression noise (Additional Cal/Val item)

A P I	Constraint (TBR)		
Anomalies Image	Level 1	Level 2	Level 3
Compression noise	none	isolated	recurrent

	Isolated	Recurrent
Number	2~4	>= 5
Area of 1 part	100x100	100x100
DN difference	20~50 DN	> 50 DN

 ${\tt K3_20130210093832_03927_04161188_L1R_B}$

- Compression ratio is '5.5' by CCSDS 122.0-B-1 (Wavelet)
 - ✓ PAN has a little
 - ✓ MS has many
 - ✓ Uniform area nearby high frequency are a in city
- User don't want the compression noise
 - ✓ KOMPSAT-3 has been changed
 - PAN: '5.5'
 - MS: '3'
 - ✓ KOMPSAT-3 has little compression noise with the Compression ratio '3'.

Monitoring of KOMPSAT-3 Product Qualit

- Reducing the Noise from Jan. 2014 after applying the additional Cal/Val
- But, Compression noise is still high.
 - ✓ Because User(reseller) can choose the Compression ratio and still use '5.5' for MS image data.

Issues and Discussion CEOS WGCV IVOS-26 (2014) Korea Aerospace Research Institute (KARI) -24-Satellite data Calibration and Validation team (SCV)

Issues and Discussion

- QR (Quality Report), that is the Internal report in KARI to monitor the KOMPSAT-3 Product (Image data) Quality, is Draft just now.
- Definite quantitative value for the image data Quality has to be determined.
 - ✓ For, and From User
 - ✓ Items, and Value of them
- The main purpose of KOMPSAT-3 is just 'Detecting and Recognizing'.
 - ✓ High resolution remote sensing satellite (GSD @ nadir = 0.7m)
 - ✓ Any difference of the image data Quality according to Resolution?
 - ✓ If no, what is the representative item of the image data Quality for them?
- In case of KOMPSAT-3 & KOMPSAT-2,
 - ✓ After Cal/Val, all Requirements of the image data Quality were Complied.
 - ✓ But User didn't comply the Quality of K3 & K2 Product,
 - ✓ and then, Additional Cal/Val works for User have been done and doing~!
- We need more works for it~!

Representative & Product Quality (?)

- These are my Questions and Concerns.
- Is there standard and general Representative and Product Quality for Users?

	Car	Computer	Imagery	Remark
by Purpose	Bus, Sedan, SUV, T ruck, etc.	Server, Desktop, La ptop, Tablet, etc.	SAR, IR, Visual, Reso lution, etc.	
by Budget	Bentz, BMW, Lexus Toyota, Honda, Kia	?	WV, GeoEye Pleiades, KOMPSAT SPOT, Landsat	
Representative	Engine size, etc.	CPU, Memory, HD D (SSD), Weight, O S, etc.	GSD, MTF, SNR, etc.	Performance (Specification)
Product Quality (IQ)	Scratch, Driving, et c.	Dead pixel, OS, S/W, KB, Mouse, etc.	Noise, etc.	Users can look at & recognize

Thank you for KOMPSAT~!

