

http:QA4EO.org

Initiated (2008) by "space-community" on behalf of GEO to facilitate harmonisation and interoperability

- Quality does not have to be "best" simply quantified
- 2012 NPL CCM (supported by UKSA) took on role of QA4EO secretariat

Applicable to all EO activities Including in-situ & modelling

QA4EO Principle

Data and derived products shall have associated with them a fully traceable indicator of their quality

Quality Indicator

Traceability

Supported by an initial set of key guidelines based on NMI best practise

A QUALITY ASSURANCE FRAMEWORK FOR EARTH OBSERVATION

- New-look website (Http:www.QA4EO.org)
- Establishment of concept and template for case study based promotion of Cal/Val/QA to different audiences
- Developed 'show case for CEOS SIT workshop
 - Support writing of examples
- Developed generic downloadable poster as community resource
 - Presented at conferences
- Promote concept across CEOS, GEO, (ESA/EU) etc
 - Included in ESA CCI
 - Also EU Copernicus and climate service (QA4ECV proj
 - Now being reported on by many space agencies
 - Presented at conferences

orkshops Documentation Resources Case Studies Links Contact

Quality assurance framework for earth observation

Providing guidance on the quality assurance of Earth Observation data.

Learn mo

QA4EO is about:

- Working with experts in the various EO communities to harmonise best practices in their respective areas.
- Cataloguing, advertising and disseminating best practice across all levels and scales.
- Provide top-level QA guidance to all GEO communities.

New-look website up online:

- Website redesign completed
- It has been updated and is now more dynamic and interactive
- New case studies page
- Comprehensive documentation
- Links to other international initiatives

QA4EO is about:

- Working with experts in the various EO communities to harmonise best practices in their respective areas.
- Cataloguing, advertising and disseminating best practice across all levels and scales.
- · Provide top-level QA guidance to all GEO communities.

- Going forward Will be developing a graphical 'easy access' to guidelines and key QA information
- Expand scope and awareness to broader GEOLSBAS Mercial

QUALITY ASSURANCE FRAMEWORK FOR EARTH OBSERVATION

Case studies:

- Case studies corresponding to best practice examples are published online
- Split into three tiers and three broad categories
- Categories include software/methods, datasets and initiatives
- Higher 'levels' correspond to greater detail for different target audience
- Focus on getting examples of all three levels of detail

Executive summary

The BSA Sentinel-2 Radiometric Uncertainty Tool (S2-RUT) wax developed in order to document and characterise the

radiometric uncertainty of Sentinel-2 level 1C products (topof-atmosphere (TOA) orthorectified radiance/reflectance).

The purpose of this is to allow Sentinel-2 data users to ob-

tain radiometric uncertainty estimates (per pixel) retrospec

tively, thereby reducing the amount of data transmitted to

model uses best practice methodol

dec set out in the Guide to the ex-

ESA Sentinel-2 Radiometric Uncertainty Tool

Level 1

Key points:

ment and processing chain to obtain uncertainty estimates

- Provides the level 1C radiometric uncertainty per pixel and associated metadata.
- Reduces the amount of data that needs to be transmitted
 - To encure traceability of the final product, knowledge of both the

tance product derived from eyethetic data. Too shows hand 9 refectance, the bottom shows the regultant uncertainty image.

nieuse contact Ferran Gascon (Serran associatives lot)

chain are regulred to provide a

In recent years there has been a more away from global uncerues. The S2-RUT provides this through modelling of the instrument and processing chain. The for the next iteration

differation of the location of the pixel paire per-pixel uncertainty value in the sensors field-of-view (by incorporating the effect of the ecampling), have been sugge

For more information on QA4ED please contact the QA4ED Secretariat (niaEorigo@qa4eo.org

A QUALITY ASSURANCE FRAMEWORK FOR EARTH OBSERVATION

Case studies: Concept

A tiered system based on target audience

- Show and tell
- Promote work of good QA
- Quick wins

e.g. policy makers, managers, funding bodies, etc.

e.g. scientists in similar fields who understand the problem

e.g. scientists who have a similar product/ software/ dataset/ etc.

Level of detail

- Promotional poster established for presentation at international conferences
- Implementation and awareness across worlds space agencies increasing
 - CEOS work plan to encourage agencies to regularly report on their progress
 - Work with GEO secretariat to build broad based implementation across all EO including in-situ
 - Develop broad range of examples to illustrate means of implementation
- Establish a reporting template to help 'self assessment of Cal/Val QA based on concepts of 'maturity matrix'

A QUALITY ASSURANCE FRAMEWORK FOR EARTH OBSERVATION

Next steps

- Need case studies (best practise, Cal/Val successes, when things went wrong/well,
 - Means to help promote need and value of Cal/VAL
- Broader use of name (QA4EO) by all agencies when referring to key principles: 'Documented evidence of traceability to international (SI) standards with full uncertainty budgets'
- QA4EO secretariat (there to help develop publicise story line).