

Uncertainty Training Emma Woolliams 4th June 2014

Metrology for Earth Observation and Climate http://www.emceoc.org

The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union

What's wrong with uncertainty training courses?!

- Too abstract
- Too much mathematics
- Examples from the wrong fieldExamples don't apply
- Too hard or too easy
- Don't introduce correlation
- I want to know how to solve my own (real) problem

What I'd like to do ...

- Give everyone a one-to-one uncertainty training course
 - Set at their own level
 - With the amount of mathematics they are comfortable with (even if that's more than I am comfortable with!)
 - With their own problem as the case study
- How close can we get to this ideal on a realistic training course?
 - Specialist training courses
 - Cover basics, but also some more advanced topics
 - Plenty of one-to-one time (long "breaks", long "question and answer")
- The main challenge for me ...
 - My expertise is radiometry ...

The first course (3rd/4th July)

Uncertainty Analysis for Earth Observation

Radiometric Instrument Calibration

- Runs: 3rd/4th July 2014 at NPL
- Now full up but it's worth signing the waiting list
- (Go to:

http://www.npl.co.uk/events/3-4-jul-2014-uncertainties-for-earth-observationtraining-course)

Developing the course

- Generic concepts
- Key case study: APEX instrument calibration (developed by Andreas Hueni)

Future plans

- Course on 'products'
 - During 2015
 - Will need a case study for this too!
 - (And maybe several)
- NPL E-learning Course
 - (see:

http://www.npl.co.uk/commercial-services/products-and-services/training/e-

Understanding the Law of Propagation of Uncertainties

Metrology for Earth Observation and Climate http://www.emceoc.org

The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union

The GUM

© JCGM 2008

The guide to the expression of uncertainty in measurement (GUM)

- The foremost authority and guide to the expression and calculation of uncertainty in measurement science
- Written by the JCGM and BIPM
- Covers a wide number of applications
- Technical with formal mathematics

http://www.bipm.org/en/publications/guides/gum.html

Uncertainty – Error - Correction

Sources of uncertainty

- Error is caused by several effects
 - Some known (correctable offsets) which can and should be corrected
 - Many unknown effects
 - Each is a "source of uncertainty"
 - Things like alignment, noise, temperature sensitivity, calibration, etc.
 - Each has its own probability distribution described by an associated uncertainty
 - When a measurement is made the unknown error comes from all these effects, some one way, some the other each a draw from that probability distribution
 - Final error (unknowable) is a combination of all these
 - The final error is a draw from the combined probability distribution described by the combined uncertainty

ror anal, r Not GUM

Uncertainty analysis

GUM

Systematic and random effects:

Lamp used 5 times to calibrate irradiance instrument

EFFECT

- Calibration of reference
- Alignment
- Noise
- Lamp current setting
- Lamp current stability
- Temperature sensitivity

SYSTEMATIC

- Yes
- If not realigned
- No
- Probably if constant
- Probably not
- Depends on how much temperature is changing

Effects are random or systematic depending on the measurement process itself

Systematic and random effects: Lamp measured 5 times (continued)

Systematic effects	Random effects	
Reference calibration	Noise	
Alignment	Lamp current fluctuation	
Lamp current setting		
Temperature sensitivities		
$\int S, u(S)$	$R_i, u(R_i)$	
$E_i = E_{\text{True}} + S + R_i$		
$u^{2}(E_{i}) = u^{2}(S) + u^{2}(R_{i})$		

Uncertainty types

There are two methods for estimating uncertainties:

Type-A:

uncertainty estimates using statistics i.e. by taking multiple readings and using that information

Type-B:

uncertainty estimates from any other information, e.g. past experience, calibration certificates, etc.

8 steps to an uncertainty budget

- Understanding the problem
 - Step 1: Describing the Traceability Chain
 - Step 2: Writing down the calculation equations
 - Step 3: Considering the sources of uncertainty
- Determining the formal relationships
 - Step 4: Creating the measurement equation
 - Step 5: Determining the sensitivity coefficients
 - Step 6: Assigning uncertainties
- Propagating the uncertainties
 - Step 7: Combining and propagating uncertainties
 - Step 8: Expanding uncertainties

8 steps to an uncertainty budget

- Understanding the problem
 - Step 1: Describing the Traceability Chain
 - Step 2: Writing down the calculation equations
 - Step 3: Considering the sources of uncertainty
- Determining the formal relationships
 - Step 4: Creating the measurement equation
 - Step 5: Determining the sensitivity coefficients
 - Step 6: Assigning uncertainties
- Propagating the uncertainties
 - Step 7: Combining and propagating uncertainties
 - Step 8: Expanding uncertainties

An unbroken chain

S

Step 1: Describing the Traceability Chain

Step 2: Writing down the calculation equations

FIGURE 1. Mechanical set-up of RASTA (left): (1) Reflectance panel, (2) lamp housing, (3) translation stage, (4) mounting adapter, (5) radiometer holder, (6) radiometer, (7) sensor fitting. Yellow: beam illuminating reflectance panel, blue: field of view of radiometers. RASTA after its alignment for calibration in the 0°:45° viewing geometry at the SRCF of PTB (right).

Step 2: Writing down the calculation equations

$$L_{\text{sphere}} = DN_{\text{sphere}}G_{\text{SVC}} \qquad L_{\text{scene}} = G_{\text{APEX}}DN_{\text{APEX,scene}}$$
$$L_{\text{scene}} = DN_{\text{APEX,scene,light}} - DN_{\text{APEX,scene,dark}}$$

$$L_{\rm sph-filt} = L_{\rm sphere} \tau_{\rm filter}$$

$$G_{\text{APEX}} = L_{\text{sph-filt}} / DN_{\text{APEX,cal}}$$

$$DN_{APEX,cal} = DN_{APEX,cal,light} - DN_{APEX,cal,dark}$$

NPL Management Ltd - In Confidence

Step 3: Considering the sources of uncertainty

1. From the calculation equation

Step 3: Considering the sources of uncertainty

FIGURE 1. Mechanical set-up of RASTA (left): (1) Reflectance panel, (2) lamp housing, (3) translation stage, (4) mounting adapter, (5) radiometer holder, (6) radiometer, (7) sensor fitting. Yellow: beam illuminating reflectance panel, blue: field of view of radiometers. RASTA after its alignment for calibration in the 0°:45° viewing geometry at the SRCF of PTB (right).

Step 3: Considering the sources of uncertainty

$$L_{\rm sphere} = DN_{\rm sphere}G_{\rm SVC}$$

- Uncertainties associated with the terms in the calculation equation:
 - Signal: Noise in light signal, noise in dark signal
 - SVC gain: Calculated from the previous step (its calibration against RASTA)
- Uncertainties associated with the assumptions in the comparison:
 - Change in SVC between calibration and use
 - External stray light influencing the SVC differently
 - Internal stray light influencing the SVC differently
 - Environmental sensitivities of the SVC (temperature, pressure, humidity)
 - Linearity of the SVC

8 steps to an uncertainty budget

Understanding the problem

- Step 1: Describing the Traceability Chain
- Step 2: Writing down the calculation equations
- Step 3: Considering the sources of uncertainty
- Determining the formal relationships
 - Step 4: Creating the measurement equation
 - Step 5: Determining the sensitivity coefficients
 - Step 6: Assigning uncertainties
- Propagating the uncertainties
 - Step 7: Combining and propagating uncertainties
 - Step 8: Expanding uncertainties

Step 4: Creating the measurement equation

$$L_{\rm sphere} = DN_{\rm sphere}G_{\rm SVC}$$

- Uncertainties associated with the terms in the calculation equation:
 - Signal: Noise in light signal, noise in dark signal
 - SVC gain: Calculated from the previous step (its calibration against RASTA)
- Uncertainties associated with the assumptions in the comparison:
 - Change in SVC between calibration and use
 - External stray light influencing the SVC differently
 - Internal stray light influencing the SVC differently
 - Environmental sensitivities of the SVC (temperature, pressure, humidity)
 - Linearity of the SVC

$$L_{\text{sphere}} = \left(DN_{\text{sphere}_l} - DN_{\text{sphere}_d} \right) G_{\text{SVC}} K_{\text{SVC}_\text{dft}} K_{\text{stray}} K_{\text{stray}_in} K_{\text{temp}} K_{\text{lin}}$$

Step 5: Determining the sensitivity coefficients

$$\begin{split} L_{\text{sphere}} &= \left(DN_{\text{sphere}_1} - DN_{\text{sphere}_d} \right) G_{\text{SVC}} K_{\text{SVC}_dft} K_{\text{stray}} K_{\text{stray}_in} K_{\text{temp}} K_{\text{lin}} \\ &\qquad \left(DN \right)_{\text{s}} = \frac{1}{N} \sum_{i=1}^{N} \left(DN \right)_{\text{light},i} - \frac{1}{M} \sum_{i=1}^{M} \left(DN \right)_{\text{dark},j} \\ c_{(DN)_{\text{light},i}} &= \frac{\partial \left(DN \right)}{\partial \left(DN \right)_{\text{light},i}} = \frac{1}{N}, \quad i = 1, \text{K} \text{, N} \\ c_{(DN)_{\text{dark},j}} &= \frac{\partial \left(DN \right)}{\partial \left(DN \right)_{\text{dark},j}} = \frac{1}{M}, \quad j = 1, \text{K} \text{, M} \\ \\ u_{(DN)}^{2} &= \sum_{i=1}^{N} \left(\frac{1}{N} \right)^{2} u_{(DN)_{\text{light},i}}^{2} + \sum_{j=1}^{M} \left(\frac{1}{M} \right)^{2} u_{(DN)_{\text{dark},j}}^{2} \\ &\qquad u_{(DN)}^{2} &= \left(\frac{u_{(DN)_{\text{light}}}}{\sqrt{N}} \right)^{2} + \left(\frac{u_{(DN)_{\text{dark}}}}{\sqrt{M}} \right)^{2} \end{split}$$

Step 5: Determining the sensitivity coefficients

$$L_{\text{sphere}} = \left(DN_{\text{sphere}}\right)G_{\text{SVC}}K_{\text{SVC}_\text{dft}}K_{\text{stray}}K_{\text{stray}_in}K_{\text{temp}}K_{\text{lin}}$$

$$c_{(DN)} = \frac{\partial L_{\text{sphere}}}{\partial (DN)} = \frac{L_{\text{sphere}}}{(DN)}$$

$$c_{G_{\text{SVC}}} = \frac{\partial L_{\text{sphere}}}{\partial G_{\text{SVC}}} = \frac{L_{\text{sphere}}}{G_{\text{SVC}}}$$

$$c_{K_i} = \frac{\partial L_{\text{sphere}}}{\partial K_i} = \frac{L_{\text{sphere}}}{K_i} \left(\frac{u_{L_{\text{sph}}}}{L_{\text{sph}}}\right)^2 = \left(\frac{u_{(DN)}}{(DN)}\right)^2 + \left(\frac{u_{G_{\text{svc}}}}{G_{\text{svc}}}\right)^2 + \left(\frac{u_{K_{\text{svedit}}}}{K_{\text{svedit}}}\right)^2 + K$$

$$c_{K_i} = \frac{\partial L_{\text{sphere}}}{\partial K_i} = \frac{L_{\text{sphere}}}{K_i}$$

Step 6: Assigning uncertainties

$$L_{\text{sphere}} = \left(DN_{\text{sphere}}\right)G_{\text{SVC}}K_{\text{SVC_dft}}K_{\text{stray}}K_{\text{stray_in}}K_{\text{temp}}K_{\text{lin}}$$

8 steps to an uncertainty budget

Understanding the problem

- Step 1: Describing the Traceability Chain
- Step 2: Writing down the calculation equations
- Step 3: Considering the sources of uncertainty
- Determining the formal relationships
 - Step 4: Creating the measurement equation
 - Step 5: Determining the sensitivity coefficients
 - Step 6: Assigning uncertainties
- Propagating the uncertainties
 - Step 7: Combining and propagating uncertainties
 - Step 8: Expanding uncertainties

The Law of Propagation of Uncertainties

$$u_{c}^{2}(y) = \sum_{i=1}^{n} \left(\frac{\partial f}{\partial x_{i}}\right)^{2} u^{2}(x_{i}) + 2\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{\partial f}{\partial x_{i}} \frac{\partial f}{\partial x_{j}} u(x_{i}, x_{j})$$

Things you might already "know"

$$u_{c}^{2}(y) = \sum_{i=1}^{n} \left(\frac{\partial f}{\partial x_{i}}\right)^{2} u^{2}(x_{i}) + 2\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{\partial f}{\partial x_{i}} \frac{\partial f}{\partial x_{j}} u(x_{i}, x_{j})$$
Has a sensitivity coefficient
Adding in quadrature (% or units)
This term is to do
with correlation
Averages reduce by $1/\sqrt{n}$

The Law of Propagation of Uncertainties

$$u_{c}^{2}(y) = \sum_{i=1}^{n} \left(\frac{\partial f}{\partial x_{i}}\right)^{2} u^{2}(x_{i}) + 2\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{\partial f}{\partial x_{i}} \frac{\partial f}{\partial x_{j}} u(x_{i}, x_{j})$$

Correlation: Type A and Type B methods

Correlation occurs when there is something in common between the different quantities, or between the measured values being combined.

Type A: From the data

Type B: From knowledge

$$E_i = E_{\text{True}} + S + R_i$$

This is where the correlation comes from!

Systematic

Effects!

Correlation: Type A and Type B methods

Correlation occurs when there is something in common between the different quantities, or between the measured values being combined.

Type A: From the data

Correlation: Type A and Type B methods

Correlation occurs when there is something in common between the different parameters, or between the measurements being combined.

Calculate covariance

Remove covariance

Type B: From knowledge

$$E_i = E_{\text{True}} + S + R_i$$

This is where the correlation comes from!

Systematic

Effects!

Averaging partially correlated data $E_1 + E_2 + E_3$

$$E_{i} = E_{\text{True}} + S + R_{i}$$

$$\frac{\partial E_{\text{M}}}{\partial E_{1}} = \frac{\partial E_{\text{M}}}{\partial E_{2}} = \frac{\partial E_{\text{M}}}{\partial E_{3}} = \frac{1}{3}$$

$$E_{\text{M}} = \frac{1}{2}$$

$$E_{\text{M}} = \frac{1}{2}$$

$$\frac{2}{3}$$

$$u(E_{i}) = u^{2}(S) + u^{2}(R_{i})$$

$$u(E_{i}, E_{j}) = u^{2}(S); \quad i \neq j$$

$$u_{c}^{2}(y) = \sum_{i=1}^{n} \left(\frac{\partial f}{\partial x_{i}}\right)^{2} u^{2}(x_{i}) + 2\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{\partial f}{\partial x_{i}} \frac{\partial f}{\partial x_{j}} u(x_{i}, x_{j})$$
$$u^{2}(E_{M}) = 3\left(\frac{1}{3}\right)^{2} u^{2}(S) + 3\left(\frac{1}{3}\right)^{2} u^{2}(R_{i}) + 3 \times 2 \times \left(\frac{1}{3}\right)^{2} u^{2}(S)$$

$$u^{2}(E_{M}) = (3+6)\left(\frac{1}{3}\right)^{2} u^{2}(S) + 3\left(\frac{1}{3}\right)^{2} u^{2}(R_{i})$$

$$u^{2}(E_{\rm M}) = u^{2}(S) + \left(\frac{u(R_{i})}{\sqrt{3}}\right)^{2}$$

Averaging partially correlated data

$$E_{\rm M} = \frac{E_1 + E_2 + E_3}{3}$$

$$\frac{\partial E_{\rm M}}{\partial E_1} = \frac{\partial E_{\rm M}}{\partial E_2} = \frac{\partial E_{\rm M}}{\partial E_3} = \frac{1}{3}$$

 $E_i = E_{\text{True}} + S + R_i$

$$E_{\rm M} = \frac{3E_{\rm True}}{3} + \frac{3S}{3} + \frac{R_1 + R_2 + R_3}{3}$$

$$u^{2}(E_{\rm M}) = u^{2}(S) + \left(\frac{u(R_{i})}{\sqrt{3}}\right)^{2}$$

Systematic and random effects: Lamp measured 5 times (continued)

Systematic effects	Random effects	
Reference calibration	Noise	
Alignment	Lamp current fluctuation	
Lamp current setting		
Temperature sensitivities		
		-
S, u(S)	$R_i, u(R_i)$	$u^{2}(E_{\rm M}) = u^{2}(S) + \left(\frac{u(R_{i})}{\sqrt{n}}\right)^{2}$
$E_i = E_{\text{True}}$ -	$+S + R_i$	
$u^2\left(E_i\right) = u^2\left(E_i\right)$	$S) + u^2(R_i)$	National Physical Laboratory

Yes, Emma ... But ...

EO is different!

- You can't write simple equations like that!
- We lose our traceability on launch!
- We can't define our measurement model!

The first course (3rd/4th July)

Uncertainty Analysis for Earth Observation

Radiometric Instrument Calibration

- Runs: 3rd/4th July 2014 at NPL
- Now full up but it's worth signing the waiting list
- (Go to:

http://www.npl.co.uk/events/3-4-jul-2014-uncertainties-for-earth-observationtraining-course)

