

POLO Pleiades Orbital Lunar Observations Status

Sophie LACHERADE <u>Aimé MEYGRET</u>

PLEIADES satellites

System of two satellites: PLEIADES-1A and PLEIADES-1B launched at the end of 2011 and 2012

Swath 20 km, agile Satellite

Spatial resolution: 0.70 m PA, 2.80 XS (4 spectral bands VIS-NIR)

PLEIADES radiometric calibration

Goal: absolute calibration < 5% - Drift monitoring < 1% Calibration sites:

PLEIADES Lunar acquisitions

 \rightarrow 167 images acquired by PLEIADES-1A since its launch (12/2011)

 \rightarrow 1069 images acquired by PLEIADES-1B since its launch (12/2012)

Cones

Sensitivity to the phase angle

- \rightarrow Confirmation of ROLO sensitivity to the phase angle (up to 6%)
- \rightarrow Large absolute difference (up to 14%) with ROLO
- \rightarrow Weak noise

CEOS WGCV IVOS-26 Meeting, June 04-06 2014

5

PLEIADES-1B Lunar acquisitions

→ Uncertainties due to the processing estimated better than 0.5% (see CALCON 2013)

- consideration of the background signal
- computation of the integrated Moon signal
- consideration of the solid angle variation within the field of view of the instrument
- calculation of the ancillary variables (body-fixed coordinates)

Coes

BUT no accurate estimation of the impact of the sensor yaw angle on the calibration results.

ightarrow new experiments to assess this effect

Impact of the moon orientation

- Moon views every minute with a 45° yaw angle variation between each image
- Variation of the phase up to 1.5°

13 Experiments performed for different phase angles of the Moon

Impact of the moon orientation

Results for PHR-1B red band : variation from 0.2% to 0.6%

- Sensitivity to the phase angle all the more important as the phase angle is small (max for full moon conditions)
- Same signature in reference to the sensor yaw angle : 0.2% variation (estimated for a minimum phase angle dependence)

The moon for PLEIADES calibration monitoring

- \rightarrow Selection of the lunar acquisitions with a phase of 40 $\,$ ($\,$ 0.5 $\,)$
- \rightarrow Similar behaviour for the 2 instruments
- \rightarrow Weak dispersion of the measurements

PLEIADES radiometric calibration

PHR1B calibration results: Moon, Desert, Antarctica

→ Retrieve the observed biais between MERIS and MODIS (Lachérade et al., IEEE, 2013)

Cross band calibration – Phase dependence

PHR1B B0 band cross-calibration in reference to the other spectral bands

- → ROLO phase dependence has less influence on cross band calibration than on temporal calibration: 2% versus 5% for phase \in [-100 :100]
- \rightarrow Accurate cross band calibration whatever the phase is
- \rightarrow Useful for sensors which cannot choose their acquisition phase angle

Cnes

Cross band calibration – Spectral dependence

Cross band calibration results for PHR1B (phase angles range: [-70;70])

Maximum dispersion: 2.5% according to the reference band \rightarrow combines official cross-band calibration errors and ROLO spectral errors

Sensors cross-calibration results

PHR-1B cross calibration in reference to PHR-1A and AQUA/MODIS over the moon (phase angle=55):

 \rightarrow Cross calibration over the moon:

- very good consistence for 558nm, 663nm and 844nm
- 3% difference for 505nm between MODIS and PHR-1B
- → Cross-calibration performance to be improved through a spectral correction (cross-calibration method currently limited to a band-to-band cross-calibration)

Absolute calibration ROLO versus on-orbit measurements

- → Very good agreement between AQUA/MODIS, PHR1A, PHR1B and MSG2 (PHR-1A and PHR-1B calibration based on ENVISAT/MERIS) (MSG2 calibration based on desert cross-calibration methods)
- → Uncertainty of the absolute calibration of the ROLO implementation up to 10% at 55 CEOS WGCV IVOS-26 Meeting, June 04-06 2014

cnes

SADE data base: Lunar observations

SENSOR	Spectral range	Nb of spectral bands	Spatial resolution	Acquisition Dates	Phase angle range	Number of measurements
PHR-1A	Vis-Nir	4	2.80m	2012-2013	[-115°;115°]	167
PHR-1B	Vis-Nir	4	2.80m	2013	[-115°;115°]	1069
AQUA/MODIS	Vis-Nir	7	250-500m	2002-2013	[51°;55°]	108
MSG1	Vis-Nir-Swir	3	2500m	2003-2012	[-150°;152°]	393
MSG2	Vis-Nir-Swir	3	3000m	2006-2013	[-145;145]	366
LANDSAT8*	Vis-Nir-Swir	8	30m	2013	-7° and +8°	148

 \rightarrow A lot of sensors with different characteristics: spatial and spectral resolution, phase angle range, radiometric absolute accuracy,...

Conclusion

• The PLEIADES dataset

- takes benefits from:
 - High spatial resolution
 - High phase angle range [-115,+115]
 - High satellite agility (rotation of the satellite to acquire the Moon every minute)
- is used to accurately quantify the calibration errors (data and method including ROLO model)

Future work:

- ROLO model phase angle dependence correction
- ROLO model as an absolute reference
- Spectral resampling for satellite cross calibration

The Moon seen by PLEIADES

More than 4 million of pixels !

