Landsat Ground Control Point (GCP) Improvement

June 5, 2014

James Storey
SGT, contractor to the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center
Sioux Falls, South Dakota
James.C.Storey@nasa.gov, +1 (301) 614-6683

*Work performed under U.S. Geological Survey contract G10PC00044

U.S. Department of the Interior
U.S. Geological Survey
Overview

- **GCP Improvement Project Background and Goals**
 - Repair regions with poor accuracy
 - Refresh circa-2000 ETM+ GCP image chips with OLI data
 - Upgrade DEM (high latitude areas) if possible

- **GCP Improvement Plan**
 - Re-triangulate problem areas in three groups (phases)
 - High priority areas, low-latitude areas, Arctic areas
 - Extract new layer of OLI image chips globally
 - Evaluate potential sources for improved DEM data

- **GCP Improvement Status**
 - Phase 1 Results
 - Future Schedule

- **Summary and Conclusions**
The global control point library used for Landsat product generation was derived from the Global Land Survey (GLS) of 2000 data set

- This ensures that new products are consistent with the existing archive (and each other) and provides ~30m (CE90) accuracy

The GLS was originally established by triangulating blocks of ETM+ imagery containing sparse control provided by NGA (DoD)

- Scenes containing NGA control are referred to as “anchor” sites
- Some areas (e.g., NE Asia, islands) had little or no NGA control
- Landsat 7 scenes were used to “control” these areas

Landsat 8 has shown us that some areas that lack anchor sites are inaccurate

- It has also shown us areas where temporal change since GLS2000 has made the GCPs perform poorly
Anchor Site Distribution

- Note the gap north of 60N and east of 90E and the lack of sites away from continental land masses
Landsat GCP Improvement Goals

- The 18-20m (CE90) geolocation accuracy of Landsat 8 has allowed us to identify areas where the GLS-derived global control point library is deficient
 - Areas that exhibit repeatable large offsets will be re-triangulated
- The existing control library image chips are all Landsat 7 ETM+ (8-bit) circa 2000
 - We want to extract up-to-date 16-bit Landsat 8 Operational Land Imager (OLI) chips for the GCPs
- Some regions exhibit significant temporal and/or seasonal changes that degrade GCP performance
 - Will extract additional seasonal or multi-temporal chips
- The Landsat DEM relies upon GTOPO30 data in some high latitude areas (north of SRTM coverage)
 - Will evaluate potential alternative DEM sources
GCP Improvement Approach

- Landsat 8 images are used in satellite block triangulation adjustments to correct problem areas
 - GCP measurements collected as part of the L1T product generation process are used as input
 - In locations with temporal problems, create new OLI GCPs
 - GCPs in problem scenes are allowed to adjust
 - GCPs in nearby scenes are held fixed to remain consistent with the surrounding area

- The new GCP positions are verified using independent test scenes and data from WorldView and/or Landsat international cooperators
Landsat GCP Improvement Plan

• Triangulation updates are proceeding in three phases:
 ◆ Phase 1 – Fifteen high priority areas with largest offsets
 ◆ Phase 2 – Remaining low latitude areas
 ◆ Phase 3 – High latitude areas

• The updated GCP positions will be released upon the completion of each phase
 ◆ Phase 1 is now complete (results are summarized in this presentation) and updated GCPs will be released soon

• Once all triangulation updates are complete, new OLI image chips will be extracted for all GCPs
 ◆ The original ETM+ chips will also continue to be used

• Newer DEM sources (e.g., ASTER DEM, WorldDEM) will be evaluated as possible replacements for the GTOPO30-derived GLS DEM in high latitude areas
GCP Problem Area Locations

- GLS Control
- Phase 1 - High Priority
- Phase 2
- Phase 3 - Arctic
Phase 1 Triangulation Results

- The first 15 triangulation blocks are complete
 - Updated GCPs will be installed into production with the next release of the IAS/LPGS (this summer)
 - Some upgrades to the GCP database design (e.g., GCP version tracking) were required to implement the new points

- A triangulation report is created for each block
 - Shows the area affected and the pre- and post-adjustment geodetic accuracy as measured by Landsat 8
 - Shows the number of points adjusted, the number of points that could not be correlated and were deactivated, and the average adjustment for each scene
 - Shows independent (e.g., WorldView) accuracy testing results

- The triangulation reports will be available from the Landsat web site once the new GCPs are released
Phase 1 Block Locations
Balearic Islands Block Example

Net Geodetic Offset in Meters

<table>
<thead>
<tr>
<th>WRS Row</th>
<th>Pre-Fit</th>
<th>Test Scenes</th>
</tr>
</thead>
<tbody>
<tr>
<td>WRS Path</td>
<td>198</td>
<td>197</td>
</tr>
<tr>
<td>31</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>32</td>
<td>13</td>
<td>166</td>
</tr>
<tr>
<td>33</td>
<td>57</td>
<td>156</td>
</tr>
<tr>
<td>34</td>
<td>29</td>
<td>18</td>
</tr>
<tr>
<td>35</td>
<td>17</td>
<td>10</td>
</tr>
</tbody>
</table>

Red indicates scenes that were adjusted in the triangulation.
Bold outline indicates NGA anchor sites.
Yellow background indicates scenes included in the triangulation.
WorldView Verification Summary

- Used WorldView data to test at least one scene in each block where control points were readjusted
 - Chad and Mauritania had OLI GCPs extracted and were not tested
- Results are consistent with L8 validation scenes

<table>
<thead>
<tr>
<th>Triangulation Block</th>
<th>Path</th>
<th>Row</th>
<th># Points</th>
<th>X Mean (m)</th>
<th>Y Mean (m)</th>
<th>X StdDev (m)</th>
<th>Y StdDev (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balearic Islands</td>
<td>196</td>
<td>32</td>
<td>10</td>
<td>-4.50</td>
<td>1.13</td>
<td>7.03</td>
<td>4.35</td>
</tr>
<tr>
<td>Balearic Islands</td>
<td>196</td>
<td>33</td>
<td>10</td>
<td>-6.75</td>
<td>-0.38</td>
<td>4.94</td>
<td>4.13</td>
</tr>
<tr>
<td>Ryukyu Islands</td>
<td>113</td>
<td>42</td>
<td>26</td>
<td>7.93</td>
<td>0.29</td>
<td>5.84</td>
<td>4.49</td>
</tr>
<tr>
<td>Hokkaido</td>
<td>105</td>
<td>30</td>
<td>10</td>
<td>9.75</td>
<td>21.00</td>
<td>6.66</td>
<td>4.74</td>
</tr>
<tr>
<td>Hokkaido</td>
<td>107</td>
<td>29</td>
<td>10</td>
<td>-4.50</td>
<td>7.88</td>
<td>5.53</td>
<td>7.17</td>
</tr>
<tr>
<td>Hokkaido</td>
<td>108</td>
<td>28</td>
<td>15</td>
<td>-7.25</td>
<td>1.00</td>
<td>7.43</td>
<td>6.41</td>
</tr>
<tr>
<td>Mauritius</td>
<td>152</td>
<td>74</td>
<td>20</td>
<td>2.92</td>
<td>-6.18</td>
<td>6.51</td>
<td>3.28</td>
</tr>
<tr>
<td>Shetland Islands</td>
<td>205</td>
<td>18</td>
<td>20</td>
<td>-6.38</td>
<td>4.50</td>
<td>7.31</td>
<td>6.51</td>
</tr>
<tr>
<td>Galapagos Islands</td>
<td>18</td>
<td>60</td>
<td>20</td>
<td>7.50</td>
<td>2.25</td>
<td>4.39</td>
<td>3.31</td>
</tr>
<tr>
<td>Sulawesi, Indonesia</td>
<td>114</td>
<td>59</td>
<td>20</td>
<td>2.81</td>
<td>-9.56</td>
<td>5.82</td>
<td>6.61</td>
</tr>
<tr>
<td>Timor, Indonesia</td>
<td>109</td>
<td>66</td>
<td>20</td>
<td>-7.13</td>
<td>-7.13</td>
<td>4.70</td>
<td>9.73</td>
</tr>
<tr>
<td>Papua New Guinea</td>
<td>98</td>
<td>63</td>
<td>20</td>
<td>23.44</td>
<td>-12.00</td>
<td>7.49</td>
<td>5.25</td>
</tr>
<tr>
<td>Hudson Bay</td>
<td>23</td>
<td>18</td>
<td>20</td>
<td>1.50</td>
<td>-8.06</td>
<td>5.89</td>
<td>6.35</td>
</tr>
<tr>
<td>Russian Arctic Coast</td>
<td>174</td>
<td>12</td>
<td>20</td>
<td>7.50</td>
<td>-4.50</td>
<td>4.71</td>
<td>7.26</td>
</tr>
<tr>
<td>Mato Grosso, Brazil</td>
<td>228</td>
<td>67</td>
<td>20</td>
<td>-0.94</td>
<td>1.13</td>
<td>3.41</td>
<td>4.57</td>
</tr>
<tr>
<td>Mato Grosso, Brazil</td>
<td>229</td>
<td>67</td>
<td>20</td>
<td>6.75</td>
<td>6.75</td>
<td>5.52</td>
<td>9.15</td>
</tr>
<tr>
<td>Saudi Desert</td>
<td>163</td>
<td>46</td>
<td>10</td>
<td>3.75</td>
<td>-10.13</td>
<td>9.52</td>
<td>15.52</td>
</tr>
<tr>
<td>Totals</td>
<td>17</td>
<td>scenes</td>
<td>291</td>
<td>2.14</td>
<td>-0.71</td>
<td>6.21</td>
<td>7.03</td>
</tr>
</tbody>
</table>
Summary

- Landsat GCP improvement efforts are underway
 - Goal is to improve the absolute accuracy of Level 1T products by upgrading the underlying GLS control framework
 - Completed first phase with the 15 most problematic areas
 - Subsequent phases will address remaining areas
 - Scenes in areas with updated GCPs will be reprocessed

- New circa 2013-2014 OLI image chips will be extracted for the Landsat GCP library
 - Will also examine temporally and seasonally variable areas as candidates for the extraction of GCP chips with multiple dates

- Will also evaluate DEM data alternatives for high latitude areas lacking SRTM data