Status of ASTER/HISUI radiometric calibration --- Vicarious calibration and cross-calibration ---

Hirokazu Yamamoto (GSJ / AIST) Toru Koyama (ITRI / AIST) Ryosuke Nakamura (ITRI / AIST) Satoshi Tsuchida (GSJ / AIST)

ASTER instruments

ASTER is a cooperative effort between NASA, Japan's Ministry of Economy, Trade and Industry (METI), and Japan Space Systems (J-spacesystems).
ASTER is one of five Earth-observing instruments launched on Dec. 18 1999.

Instrument	VNIR	SWIR	TIR
Bands	1-3	4-9	10-14
Spatial			
Resolution	15m	30m	90m
Swath Width	60km	60km	60km
Cross Track	± 318km (±	± 116km (±	± 116km(±
Pointing	24 deg)	8.55 deg)	8.55 deg)
Quantisation			
(bits)	8	8	12

HISUI instruments

•HISUI is a future spaceborne instrument suite which consists of hyperspectral and multispectral imagers, and being developed by Japanese Ministry of Economy, Trade, and Industry (METI).

•HISUI will be launched in 2016 or later ...

Parameter Imaging Type Spatial Resolution / Swath		Hyperspectral Imager	Multispectral Imager Pushbroom 5 m / 90 km	
		Pushbroom		
		30 m / 30 km		
	Bands	185	4	
Spectral	Range	0.4 - 2.5 μm	0.45 -0.90 μm	
	Resolution	10 – 12.5 nm	60 – 140 nm	
SNR (30% albedo)		≥ 450 @620 nm ≥ 300 @2100 nm	≥ 200	
MTF		≥ 0.2	≥ 0.3	
Quantization		12 bits	12 bits	
Data Compression		Lossless (70%)	Lossless (70%)	
Pointing		Cross track, up to ± 3 ° (≈ ±30 km)	N/A	

Vicarious calibration and crosscalibration for ASTER and HISUI

- ASTER
 - Vicarious calibration (Sites) : Ivanpah Praya, Alkali Like, Railroad Valley, Lake Lefroy, ...
 - Cross-calibration (Sensors) : Terra MODIS, Landsat-8 OLI ...
- HISUI
 - Vicarious calibration (Sites) : Ivanpah Praya, Alkali Like, Railroad Valley, Lake Lefroy, ...
 - Cross-calibration (hyperspectral Sensors) : EnMAP, PRISMA, CLARREO, TRUTHS...
 - Cross-calibration (Multispectral Sensors) : VIIRS, Landsat-8
 OLI, LDCM, Formosat-5 RSI...,

Sites for vicarious calibration

Ivanpah Praya

Alkali Lake

Railroad Valley

ASTER VNIR Results

Radiometric evaluation of long-term Terra ASTER/MODIS cross-calibration

Instrumented sites

Pseudo-invariant desert sites

			ASTER
			scenes
	Longitude	Latitude	(cloud :
Site Name	[deg]	[deg]	0~100%)
Tuz Golu	E33. 33	N38. 83	31
			100
RRV	W115.69	N38.50	126
Negev	E35. 01	N30. 11	61
La Crau	E4. 86	N43. 56	53
IVP	W115.40	N35. 57	186
Frenchman			
Flat	W115.93	N36.81	93
Dunhuang	E94. 34	N40. 13	50
DOME-C	E123. 0	S74. 50	82

			ASTER
			scenes
	Longitude	Latitude	(cloud :
Site	[deg]	[deg]	0~100%)
Libya1	E13. 35	N24. 42	15
Libya4	E23. 39	N28. 55	26
Mauritania1	W9.30	N19. 40	12
Mauritania2	W8.78	N20. 85	16
Algeria3	E7. 66	N30. 32	34
Algeria5	E2. 23	N31.02	0

Apr., 2000 ~ Mar., 2013

Apr., 2000 ~ Mar., 2013

We selected 45deg>SZA for 8 CEOS instrumented sites and 6 pseudo-invariant desert sites , and removed cloudy scenes by using MODIS cloud mask (MOD35) products (Cloud fraction = 0).

Comparison between ASTER and MODIS relative spectral response

New ASTER VNIR Calibration coefficient

- RadioDB v3.13
- Calibration Coefficient =B*exp[A*DSL]+C

	А	В	С
Band 1	0	0	0.6938
Band 2	0	0	0.7686
Band 3N	0	0	0.8259
Band 3B	0	0	1

after Mar 4, 2013

ASTER/MODIS cross calibration with vicarious calibration helps us understanding the degradation trend.

->

HISUI calibration and validation plan

Lunar Reflectance model developed from SELENE/SP data for Lunar Calibration

Toru Kouyama, Hirokazu Yamamoto Ryosuke Nakamura (AIST, Japan) + HISUI Calibration WG

Lunar reflectance model

530 − 1800 nm (160 channels) $\Delta\lambda = 6 - 10 \text{ nm}$ 0.5° x 0.5° resolution \rightarrow ~1 pixel size of HISUI/Hyper (30 m)

Including lunar surface photometric properties depending on incident, emission and phase angles.

Observed ASTER/Band 2 (660 nm) April 14, 2004

Simulated

Brightness Comparison

Simulated radiance (W/m²/µm/str)

	Band 1	Band 2	Band 3
Correlation Coefficient between Observed & Simulated	0.992	0.993	0.993
Observed / Simulated	1.27 ± 0.05	1.01 ± 0.04	0.95 ± 0.03

April 13, 2003

Simulating Moon observations

April 15

April 18

Summary

Lunar reflectance model based on SELENE/SP hyper-spectral data has been developed.

The model is, at least, useful to evaluate relative degradation of sensors because of high correlation coefficients.

By using the model, we can simulate/predict any moon observation.

SELENE/SP team is now preparing the model to be published.

Additional slides ...

The hyperspectral imager:

Contiguous and high resolution spectral information from visible to short-wave IR

The multispectral imager:

4 Bands observation with a high spatial resolution by a wide swath

ASTER Unit Conversion Coefficients:UCC (W/m2/str/um/DN)

Band #	High	Normal	Low1	Low2
1	0.676	1.688	2.25	N/A
2	0.708	1.415	1.89	N/A
3N/3B	0.423	0.862	1.15	N/A
4	0.1087	0.2174	0.29	0.29
5	0.0348	0.0696	0.0925	0.409
6	0.0313	0.0625	0.083	0.39
7	0.0299	0.0597	0.0795	0.332
8	0.0209	0.0417	0.0556	0.245
9	0.0159	0.0318	0.0424	0.265
10	N/A	0.006822	N/A	N/A
11	N/A	0.00678	N/A	N/A
12	N/A	0.00659	N/A	N/A
13	N/A	0.005693	N/A	N/A
14	N/A	0.005225	N/A	N/A