

### NASA

#### **Atmospheric Correction Discussion**

#### Kurt Thome

CEOS/IVOS 25 Frascati, Italy *March 19-21, 2013* 

NASA/Goddard Space Flight Center Kurtis.thome@nasa.gov

03/21/2013

#### Reminder

#### Ultimate goal of atmospheric correction discussion is understanding the impact of uncertainties in the correction

- Develop a set of recommended approaches to ensure better comparability between different groups
  - Permit development of new methods
  - Create a common starting point for all groups
- Areas for best practices are
  - Radiative transfer code
  - Input parameterization
  - Measurement approaches
  - Instrumentation
  - Retrieval methods



### Why IVOS?

## Many subgroups in CEOS and other multi-agency groups rely on atmospheric correction

- End result is an understanding of how atmospheric effects alter the calibration process in vicarious methods - TOA radiance
- Accuracy of correction depends on knowledge of atmospheric conditions - Atmospheric Composition Subgroup
- Correction depends on surface BRF Land Prdoucts Validaton Subgroup
- IVOS goals do not care about the quality of the inputs
  - Emphasizes sensivity to the inputs
  - Knowing the accuracy of input
- IVOS does not want to be distracted by retrieval algorithms but to concentrate on RT codes



#### **Radiative transfer code**

Decided that code comparisons were still worthwhile even though it repeats past comparisons

- Codes show favorable results when given identical inputs
- Typical IVOS applications are straightforward RT cases
  - High reflectance
  - Low aerosol amounts
- Comparisons are really of the processing approaches
  - Aerosol parameterization
  - Surface assumptions
- Plan was to use Tuz Golu campaign data to create a <u>standard input data set</u>
  - Use the standard data set to predict at-sensor radiance
  - Compare the at-sensor radiances
- Seems to have lost momentum



#### Standard data set

### Standard data set to allow groups to evaluate their processing approaches

- Web access to standard input and result from an established group using these inputs
  - Good tool for groups initiating new field programs
  - Good tool for groups implementing a new radiative transfer approach
- Rely on an artificial data set
  - Allows coupling of aerosol optical depth and surface reflectance
  - Can limit impacts from input parameterization
- Risk is that it drives users towards simply matching the standard results



#### **Atmospheric parameterization**

Agreed to the following list of parameters used as inputs to the radiative transfer models

- Spectral optical depth (total, component)
- Aerosol optical depth at 550 nm
- Angstrom coefficient (also known as power law exponent)
- Junge parameter
- Surface pressure
- Column water vapor amount
- Column ozone amount
- Aerosol type (colloquial model as well as real and imaginary index of refraction, minimum/maximum radius)
- View-sun geometry
- Surface height
- Sensor height



#### Standard data set

Recommend that the base input data set on a clean aerosol over a moderately bright surface

- Low aerosol absorption reduces impact of aerosol composition selection
- Modest aerosol loading (0.1 at 550 nm)
- Spectral reflectance constant with wavelength
  - Initial input of 0.4 reflectance
  - Second case with 0.05 reflectance
- 45 degree view angle (no ambiguity on elevation versus zenith)
- 60-degree solar zenith angle (large difference in radiance if elevation versus zenith angle confusion)
- Lambertian surface
- Radiance output at 1-nm intervals



#### Sensitivity analysis

Sensitivity studies were planned among two Tuz Golu groups to evaluate uncertainties from atmospheric correction

- Recommend moving forward only with standard input sets
- Repeating past published sensitiviy analyses is not recommended
- Should concentrate on cases directly applicable to a given test site
- Use standard inputs to give guidance to participants to perform sensitivity analyses for their specific site
  - Atmospheric parameterization
  - Surface reflectance
- Ignore lambertian vs. non-lambertian for now



#### Summary

# Slightly modified path forward for developing best practices for atmospheric correction

- Radiative transfer code intercomparison based on standard input data sets for "training"
- Guidance on sensitivity analyses will help groups understand significant differences from standard output
- Compiling results leads to a set of best practices
  - Processing schemes
  - Input parameterization
  - Recommended measurement approaches

