

CALIBRATION over the Moon

An introduction to « POLO »

Sophie Lachérade Bertrand Fougnie Aimé Meygret

CEOS - IVOS 25, Frascati, 19-21 march 2013

Introduction

- It has been demonstrated that the Moon is a very precious way to monitor in-orbit the radiometric drift of sensors
- Activity under development at CNES
 - Method implemented in the operational MUSCLE/SADE environment
 - Missions: PLEIADES, VENµS,...
- Starting of Pleiades 1A and 1B commissioning phases in Jan'12 and Jan'13
 - Strong ability to "catch" the moon
 - Intensive acquisitions have been performed (recom phase = 40)
 - » 1 moon every day during one lunar cycle
 - » various moon cycles
 - » several moons during the day : every orbit, 2 successively, several on the same orbit
 - » 1 moon simultaneously by PH1A and PH1B
- This defines the Pleiades Orbital Lunar Observations "POLO"
 - Intensive <u>in-orbit</u> acquisitions in various conditions
 - + Goals:
 - » to better understand the published ROLO model in its operational form
 - » to quantify the potential impact of the viewing and sun geometry, sampling and resampling
 - » to derive recommendations
 - » to contribute to improve the use of lunar acquisitions
 - » to develop sensors cross-calibration over the moon

Overview of PLEIADES HR mission & satellite

MISSION

Spatial resolution

Panchromatic : 70 cm XS (B, G, R, NIR): 2.80 m

Simultaneous PA + XS acquisition Swath: 20 km

SATELLITE

• Mass : < 1 T

• Power : Lithium-ion batteries Rigid AsGa solar panels

• AOCS : Gyro actuators Star sensors Optical fiber gyros

- Image telemetry at 600 Mbps
- 600-Gbit mass memory

INSTRUMENT

- Korsch camera
- Focal length 12.90m
- Diameter 0.65m
- PA retina : TDI detector
- XS retina : four color CCD
- 12 bit quantization
- On-board detectors normalization
- Wavelet compression: from 1.4 to 3.33 bits/pixel

PHR1A launch: December 17, 2011 PHR1B launch: December 2, 2012

The PLEIADES system

Jupiter and its moon

The PLEIADES system

Example of video over Melbourne (Australia)

<u>..\..\PLEIADES\PHR-</u> <u>1A\IMAGES\PHR_VIDEO\MELBOURNE\2600_8400.exe</u>

The PLEIADES absolute calibration

Goal: radiometric absolute calibration better than 5%

Methods:

Lunar calibration is a multi-temporal calibration method

- → Regular acquisition of the moon fixed phase of 40 every month 2 views per day to allow stereoscopic acquisitions
- H.H. Kieffer, T.C. Stone, R.A. Barnes, S. Bender, R.E. Eplee, J. Mendenhall, L. Ong On-orbit radiometric calibration over time and between spacecraft using the moon SPIE 4881, pp. 287-298, 2003.

7

Pleiades on the moon

Pleiades on the moon

The PLEIADES absolute calibration

Focus on the LUNAR acquisitions

 \rightarrow Multi-temporal calibration based on Moon with a phase of 40

- Stability of the instrument since the Launch
- Consistency of the 3 methods for the temporal evolution of the sensor

How to explain the dispersion of the lunar acquisitions (2%)?

→ Decision to extend the moon acquisitions to cover the entire Moon cycle (from -115 to 115) to better understand the method

\Rightarrow 138 images acquired by PLEIADES1A since its launch (12/2011)

 \Rightarrow 150 images acquired by PLEIADES1B since its launch (12/2012)! CORE

Focus on the LUNAR acquisitions

 \rightarrow Evolution of the moon with the phase

Moon_PHR1A_April.exe

- \Rightarrow Sensitivity of the method with :
 - conditions of acquisition
 - the phase of the moon

Conclusion

 Thanks to Pleiades satellites agility, and taking advantage of the commissioning phases, we performed intensive in-orbit moon acquisitions varying sun and viewing geometries

 \rightarrow The "POLO" Pleiades Orbital Lunar Observations

The analysis of this set of data is ongoing

- To check the implemented ROLO model
- To better understand the results sensitivity to the phase of the moon (residue modelization?)
- To better analyze the impact of the viewing geometry on the calibration results (the yaw angle is not constraint)
- To better consider the over/under-sampling impact regarding acquisition configuration
- To demonstrate the moon interest for cross-calibration tested for P1A and P1B : same date + same phase

COPS