

Monitoring Stability of VIIRS Radiometric Response

Slawomir Blonski, Changyong Cao, Sirish Uprety, and Xi Shao NOAA / NESDIS / STAR

Presented at the CEOS IVOS-24 Meeting, Sioux Falls, South Dakota, May 8-10, 2012

First Image from Suomi NPP VIIRS

- Opening of the VIIRS nadir door on November 21, 2011
- Global observations of land, ocean, and atmosphere with high (~daily) temporal resolution
- Builds on a long heritage of operational and research earth observing imaging radiometers with moderate resolution:
 - AVHRR (Advanced Very High Resolution Radiometer) on NOAA and MetOp satellites, with 5 (6) bands, since 1979
 - MODIS (Moderate-Resolution Imaging Spectroradiometer) on EOS Terra and Aqua, with 36 bands, since 1999
 - SeaWiFS (Sea-viewing Wide Field-of-view Sensor), since 1997
 - OLS (Operational Linescan System) on DMSP, since 1972
- Characteristics:
 - Multispectral scanning radiometer
 - 22 bands between 400 nm and 12 μm :
 - 5 Imaging, 375-m bands
 - 16 Moderate-resolution, 750-m bands
 - 1 broadband Day/Night, 750-m band
 - 12-bit quantization
 - 3000 km swath width

Bands M5, M4, M2 shown as RGB

VIIRS Novel Spatial Sampling Characteristics

Three pixel aggregation zones reduce GSD growth as a function of scan angle and allow for extended swath width

Extent of a multi-granule, single-swath image from VIIRS (courtesy of NASA and University of Wisconsin - Madison)

VIIRS

Antarctic Dome C Observations

- The Antarctic Dome C site is located in the High Polar Plateau Region at 75°06'S, 123°21'E with mean elevation of 3.2 km above sea level
- The site has the following characteristics that make it very suitable for radiometric calibration and validation of satellite sensors:
 - Surface is flat and covered with uniformly distributed, permanent snow
 - Temperatures are extremely cold and stable, except for seasonal variability
 - Skies are clear most of the time, with more than 75% of days being cloud free
 - Atmosphere above the site has low water vapor and aerosol loading, thus atmospheric effects are small
- TOA (top-of-atmosphere) reflectance measured by VIIRS at the Dome C site was averaged over a 48×48-pixel area to reduce effects of radiometric response non-uniformity (striping)
- To mitigate BRDF effects, band ratios were calculated between the bands M1, M2, M4 to M7, and the band M3

SVM05_npp_d20120124_t0722155_e0727559_b01247_c20120124183134736309_noaa_ops

An example of a 4-granule VIIRS image that includes the Dome C site in Antarctica (band M5)

Data Quality Assurance Without Corrections

Restricted solar zenith angles and satellite viewing angles:

- Data points with solar zenith angle larger than 75° or satellite zenith angle larger than 15° were excluded from the analysis (yellow and blue dots)
- Only points shown as red and magenta dots were included

Monitoring VIIRS Sensitivity Degradation

- Antarctic Dome C data have shown that VIIRS Earth View (EV) measurements changed with time similarly to the onboard solar diffuser observations
- Changes of radiometric response are similar both in spectral dependence and in magnitude:
 - $\,\circ\,$ The "blue" band M2 is almost stable
 - The "red" band M5 is moderately affected (~10% change over 3-4 months)
 - The largest decline occurs for the NIR band M7 (~20%)
- Scaling of earlier measurements according to calibration coefficient lookup table (LUT) changes shows continuity of radiometric responses
- Weekly LUT updates have stabilized radiometric responses starting with LUT 4 (unfortunately the ending of austral summer increased uncertainty of recent Dome C measurements)

SNO Prediction and Analysis

- Based on information from the NOAA/STAR/NCC SNO (simultaneous nadir overpass) prediction website, https://cs.star.nesdis.noaa.gov/NCC/SNOPredictions, included all SNO datasets acquired by NPP VIIRS and by MODIS from both Agua and Terra between February 14 and March 20, 2012
- For each SNO, averaged valid VIIRS and MODIS pixels from a 12-km by 12-km area selected at the intersection of the satellite ground tracks (16×16 750-m pixels for VIIRS and 12×12 1-km pixels for MODIS): typically provides closer spatial coincidence than temporal one (still within $\sim 1-2$ min.)
- The NPP Agua SNOs occurred over snow-covered Antarctica (some at the Dome C site), providing bright surfaces in the VisNIR bands, while the NPP - Terra SNOs occurred over northern Siberia, Scandinavia, and ocean (both dark and bright scenes)

NPP and Terra SNO Example

NPP and Agua SNO Example

Table of predicted SNOs for the next 14.0 days since TLE Epoch: 2/11/2012

Index	Date (AQUA)	Time (AQUA)	AQUA Lat,Lon	Date (NPP)	Time (NPP)	NPP Lat,Lon	Distance(km)	Time Diff (sec)
1	02/12/2012	14:07:39	68.18,-167.05	02/12/2012	14:06:26	68.31,-168.01	42.15	73
2	02/12/2012	14:54:19	-76.97, 18.64	02/12/2012	14:54:19	-76.97, 18.68	1.08	0
3	02/12/2012	15:41:09	81.79,-126.79	02/12/2012	15:42:22	81.33,-126.43	50.45	73
4	02/15/2012	06:21:38	76.25, -35.59	02/15/2012	06:20:45	76.25, -35.60	0.21	53
5	02/15/2012	07:10:43	-77.31, 135.83	02/15/2012	07:11:07	-77.32, 135.89	1.70	24
6	02/17/2012	22:37:58	76.73, 81.90	02/17/2012	22:37:29	76.73, 81.94	1.10	29
7	02/17/2012	23:27:13	-77.31,-108.29	02/17/2012	23:28:02	-77.30,-108.40	2.89	49
8	02/20/2012	14:54:28	76.76,-162.13	02/20/2012	14:54:24	76.75,-162.23	2.77	4
9	02/20/2012	15:43:35	-77.71, 9.21	02/20/2012	15:44:48	-77.70, 9.18	0.76	73
10	02/23/2012	06:21:41	-76.37, 144.76	02/23/2012	06:20:44	-76.37, 144.78	0.54	57

Red line: AQUA Blue line: NPP TLE Epoch: 2012/2/11

VIIRS vs. MODIS SNO Comparisons

- Compared TOA (top-of-atmosphere) reflectance measured by VIIRS and MODIS at the SNO sites (accounts for solar zenith angle differences)
- Because of differences between spectral responses of VIIRS and MODIS bands, reflectance data do not match exactly
- The effect of the spectral response difference on the measured reflectance (spectral bias) was recently estimated using satellite hyperspectral data collected over the Antarctic Dome C site (Cao et al., submitted for publication)
- Ratios of the VIIRS band I2 and MODIS band 2 data (as well as I1 and band 1 data) agree very well with the prediction from that study
- This comparison confirms accuracy of the current radiometric calibration for VIIRS bands I2/M7, which are the bands the most affected by the mirror degradation anomaly
- Other VIIRS bands also display high correlation with MODIS counterparts: estimates of spectral biases for these bands are ongoing
- While Terra provides so far most of the low reflectance data, a small bias between Aqua and Terra data can be seen (will investigate)

Monitoring Stability of Radiometric Calibration

- Updates of the radiometric lookup tables (LUTs) for VIIRS Reflective Solar Bands have improved calibration and uniformity of radiometric response
- With the weekly LUT updates, radiometric calibration is stable and agrees well with MODIS measurements (barring small spectral biases)
- LUT updates should be applied more frequently than on the weekly basis: a scan-by-scan update is planned for July '12

Backup Slides

VIIRS vs. MODIS SNO Comparisons (cont.)

VIIRS vs. MODIS SNO Comparisons (cont.)

VIIRS-MODIS Spectral Response Comparison

