

IVOS theme on:

Radiative Transfer codes

Jean-Luc Widlowski (EC Joint Research Centre)

with contributions from Tamás Várnai (GFCS)

Outline

Clouds:

Intercomparison of 3D Radiative transfer Codes (http://i3rc.gsfc.nasa.gov/)

Vegetation:

RAdiative transfer Model Intercomparison (http://rami-benchmark.jrc.ec.europa.eu/)

I3RC: an ongoing project initiated in the late 1990s

Objectives

- comparing methods available for 3D atmospheric RT calculations
- providing benchmark results for testing 3D RT codes
- publishing an open source toolkit (community 3D MC code)
- providing resources related to I3RC and 3DRT (codes, models, workshops, publications)

Model comparisons

- participants from 7 countries, using Monte Carlo and analytical models
- 3 phases of increasingly complex experiments
- experiments discussed at 3 workshops and at conferences (e.g., IRS 2008 in Brazil)
- results from Phases 1 & 2 published in BAMS article by Cahalan et al. (2005)
- results from Phase 3 published in extended abstract International Conference on Mathematics, Computational Methods & Reactor Physics (Saratoga Springs, NY, 2009)
- all results available at I3RC website: http://i3rc.gsfc.nasa.gov

I3RC test cases

Consensus results for each case

- based on well-agreeing models
- have helped testing new models
- available at I3RC website: http://i3rc.gsfc.nasa.gov

I3RC community model for 3D radiative transfer http://i3rc.gsfc.nasa.gov

Publicly available model

- Publicly available source code (updated in June, 2010)
- Package also includes scripts for easy use and Mac executables
- Performance of the code is documented in JAS paper by Pincus and Evans (2009)
- Open Source Licensing to encourage further development and widest usage

Online 3D radiative transfer calculator

- Simple web interface based on I3RC community code
- Over 100 users since its release in January 2012
- Short 1D or 3D radiative transfer simulations (up to 5 min)
- Yields the spatial distribution and scene average value of radiances, fluxes, and absorption at selected wavelengths

Sample results for I3RC Case 4

Other I3RC activities and plans

Conference sessions on 3D radiative transfer

• Most recent: IUGG 2011 in Australia

Website (http://i3rc.gsfc.nasa.gov)

- Publication database of over 400 papers on 3D radiative transfer
- Online image library for illustrating 3D radiative processes
- Links to publicly available models related to 3D clouds and radiation

Plans

- I3RC poster at IRS 2012 in Berlin
- 3DRT/I3RC involvement in a model verification subgroup of WGCV
- Enhance capabilities of community model and online calculator e.g., polarization, broadband
- Expand resources at website

RAMI

- Platform for the systematic verification of RT models dealing with shortwave radiation & vegetated surfaces (launch 1999)
- Evaluation is primarily in 'forward' mode, i.e., to simulate an instrument's output using a detailed scene description
- > Early phases, using simple canopy targets, managed:
 - to identify 'credible' RT models (3-D Monte Carlo ray-tracing)
 - to develop reference datasets (community standards)
 - to **automate** the verification process (RAMI On-Line Model Checker)

RAMI-IV status

Analysis of results from 4th phase on-going:
Current focus is on 'abstract' canopy scenarios

Some stats:

- Received files: 95,443 (BRF: 58,356; fluxes 31,218; vprof: 5869)
- Number of unique BRF simulations: 1,628,148 (21,423 files)
- Number of unique vprof simulations: 66,759 (2,023 files)
- Number of email exchanges (25 April 2012): 1,270

Profiles of upward & downward radiation fluxes

RAMI-IV abstract cases Measurements

Bi-directional reflectance factors (total, single collided, multiple collided, single un-collided by vegetation)

RAMI-IV abstract cases Canopy scenarios

Heterogeneous canopies with anisotropic background

RAMI-IV abstract cases Canopy scenarios

Heterogeneous two-layer canopies

RAMI-IV abstract cases Canopy scenarios

Heterogeneous canopies on an inclined slope

RAMI-IV abstract cases

Consistency

BRF_total – (BRF_mult + BRF_coll + BRF_uncoll) = 0

European Commission

Model-to-model differences of all BRF simulations:

NIR only

RAMI-IV abstract cases reference data

Use simulations of 3-D Monte Carlo ray-tracing models that were identified as 'credible' models during RAMI-3

Commission

- Compute 'robust average' from their simulations using algorithm A proposed in Annex C of ISO-13528
- > Compare against model simulations

INTERNATIONAL STANDARD	ISO 13528
Statistical methods for use in testing by interlaboratory con	proficiency nparisons
C.1 Robust analysis: Algorithm A	
This algorithm yields robust values of the average and standard deviation of	the data to which it is applied.
NOTE 1 Algorithms A and S given in this annex are reproduced from ISO 5725-5.	
NOTE 2 Robustness is a property of the estimation algorithm, not of the estim correct to call the averages and standard deviations calculated by such an algorithm excessively currentsome terminology, the terms "robust standard this international Standard to mean estimates of the population mean or of the po- using a robust algorithm.	hales it produces, so it is not strictly robust. However, to avoid the use of rid deviation' should be understood in pulation standard deviation calculated
Denote the p items of data, sorted into increasing order, by:	
$x_1, x_2,, x_i,, x_p$	
Denote the robust average and robust standard deviation of these data by x'	and st.
Calculate initial values for x* and x* as:	
$x^{*} = median \text{ of } x_{i}$ $(t = 1, 2,, p)$	(C.1)
$s^* = 1,483 \text{ median of } [x_i - x^*]$ $(t = 1, 2,, p)$	(C.2)
Update the values of x* and s* as follows. Calculate:	
$\delta = 1.5s^*$	(C.3)
For each x_i ($i = 1, 2,, p$), calculate:	
$[x^* - \delta \text{if } x_i < x^* - \delta]$	
$x_{i}^{*} = \{x^{*} + \delta, \text{ if } x_{i} > x^{*} + \delta\}$	(C.4)
[x _f , otherwise]	
Calculate the new values of x" and x" from:	
$x^* = \sum x_i^* / p$	(C.5)
$s^* = 1.134 \sqrt{\sum (x_i^* - x^*)^2 / (p - 1)}$	(C.6)
where the summation is over r.	
The robust estimates x* and x* may be derived by an iterative calculation, i.u. x* several itenes using the modified data, until the process converges. Con there is no change from one iteration to the next in the third significant figur and of the equivalent figure in the robust average. This is a simple method to	by updating the values of x* and vergence may be assumed when e of the robust standard deviation program on a computer.

RAMI-IV abstract cases Results (draft)

Histograms of model-to-reference differences for flux profile simulations

p=percentage of test cases covered by model [%]

RT models used to build reference are excluded here.

RAMI outlook

Finish analysis of RAMI-IV abstract cases (end 2012)

Achieve re-submission of faulty 'actual' canopy cases of RAMI-IV and start/complete analysis (2013)

- Compare model simulations of BRFs for 3D artifical targets against actual measurements acquired under controlled experimental conditions (MetEOC)
- Expand RAMI OnLine Model Checker to larger set of experiments (RAMI4PILPS, MetEOC)

Thank you

Jean-Luc.Widlowski@jrc.ec.europa.eu

