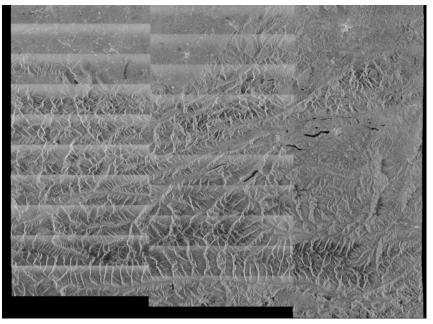
Mutual Interference between C-Band SAR

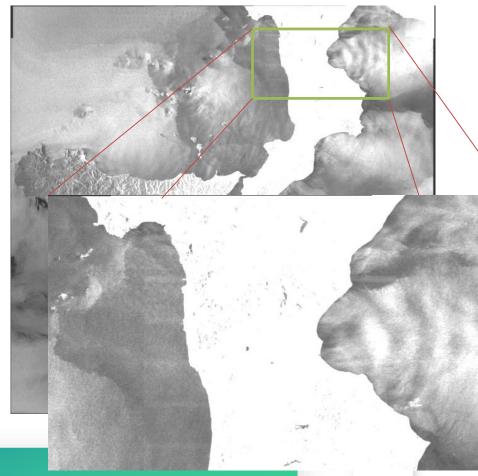
Prediction of occurrences for identification of sources

Authors: G.Hajduch, D. Le Levier

Date: 2019/11/18

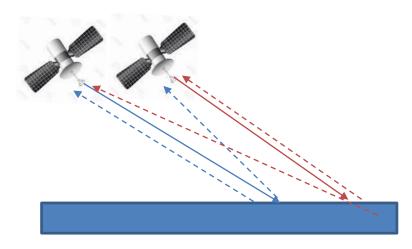
Event: VH-RODA workshop




Example

~ 3mn along track

S1A-GRDH-IW-20150816_165825-007291-G0-VH-r10.rsl-id2b.png



Context

- C-Band transmissions from other spacecraft can interfere with the signal received by Sentinel-1A or Sentinel-1B (and inversely)
- This induces degradation of the image quality through "stripes" in the images.
- Duration of the interferences is variable, depending on mutual operations of the sensors and their proximity

Example of spacecraft configuration (proximity)

- Prediction of RFI from know sources
- Identification of yet unknown sources

Known C-Band emitters

• From https://www.wmo-sat.info/oscar/spacecapabilities

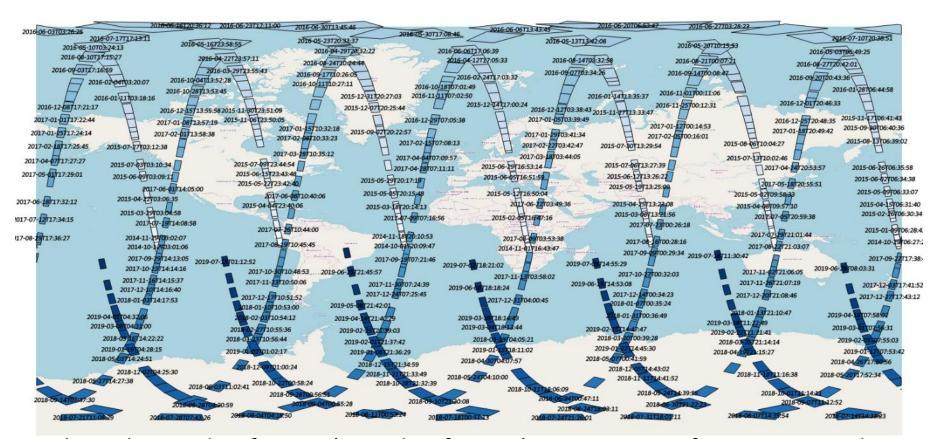
ID \$	Satellite \$	Main Agency	Launch \$	EOL \$	Service \$	Direction or sensing mode	Frequency A	Emission	Bandwidth \$	Polarisation \$	Data rate or Baseband	D/A ≎	Comments	\$
2509	JASON-CS- A	NASA	≥2020	≥2027	Altimeter	active	5300 MHz		N/R kHz	TBD		D	SRAL C-band	
2511	JASON-CS- B	<u>NASA</u>	≥2025	≥2032	Altimeter	active	5300 MHz		N/R kHz	TBD		D	SRAL C-band	
3112	<u>Envisat</u>	<u>ESA</u>	2002-03-01	2012-04- 08	IMAGER	active	5331 MHz		N/R kHz	TBD		D	ASAR	
2441	RadarSat-2	CSA	2007-12-14	≥2019	IMAGER	active	5405 MHz		100000 kHz	H&V		D	C-band SAR	
2442	RCM-1	CSA	2019-06-12	≥2026	IMAGER	active	5405 MHz		100000 kHz	H&V		D	C-band SAR	
2443	RCM-2	CSA	2019-06-12	≥2026	IMAGER	active	5405 MHz		100000 kHz	H&V		D	C-band SAR	
2444	RCM-3	CSA	2019-06-12	≥2026	IMAGER	active	5405 MHz		100000 kHz	H&V		D	C-band SAR	
2519	Sentinel-1A	ESA	2014-04-03	≥2021	IMAGER	active	5405 MHz		N/R kHz	TBD		D	SAR-C	
2520	Sentinel-1B	<u>ESA</u>	2016-04-25	≥2023	IMAGER	active	5405 MHz		N/R kHz	TBD		D	SAR-C	
3545	Sentinel-1C	ESA	≥2022	≥2029	IMAGER	active	5405 MHz		N/R kHz	TBD		D	SAR-C	
3546	Sentinel-1D	<u>ESA</u>	≥2023	≥2030	IMAGER	active	5405 MHz		N/R kHz	TBD		D	SAR-C	
1798	Electro-L N4	<u>RosHydroMet</u>	≥2021	≥2028	TC & Ranging	E-S	5747.124 MHz	8M19G2D	10050 kHz	LHCP	0.1/1.0 kbps	D	Telemetry, command & ranging	
1548	Meteor-M N2-2	RosHydroMet	≥2019-07	≥2024	TC & Ranging	E-S	5747.124 MHz	8M19G2D	10010 kHz	LHCP	0.1/1.0 kbps	D	Telemetry, command & ranging	
1813	Meteor-M N2-3	RosHydroMet	≥2020	≥2025	TC & Ranging	E-S	5747.124 MHz	8M19G2D	10010 kHz	LHCP	0.1/1.0 kbps	D	Telemetry, command & ranging	
1828	Meteor-M N2-4	RosHydroMet	≥2021	≥2026	TC & Ranging	E-S	5747.124 MHz	8M19G2D	10010 kHz	LHCP	0.1/1.0 kbps	D	Telemetry, command & ranging	
1843	Meteor-M	RosHydroMet	≥2022	≥2027	TC & Ranging	E-S	5747.124 MHz	8M19G2D	10010 kHz	LHCP	0.1/1.0 kbps	D	Telemetry, command &	

Showing 1 to 59 of 59 entries - filtered from 2,537 records

However, not exhaustive as for instance does not mention GAOFEN-3

Methodology

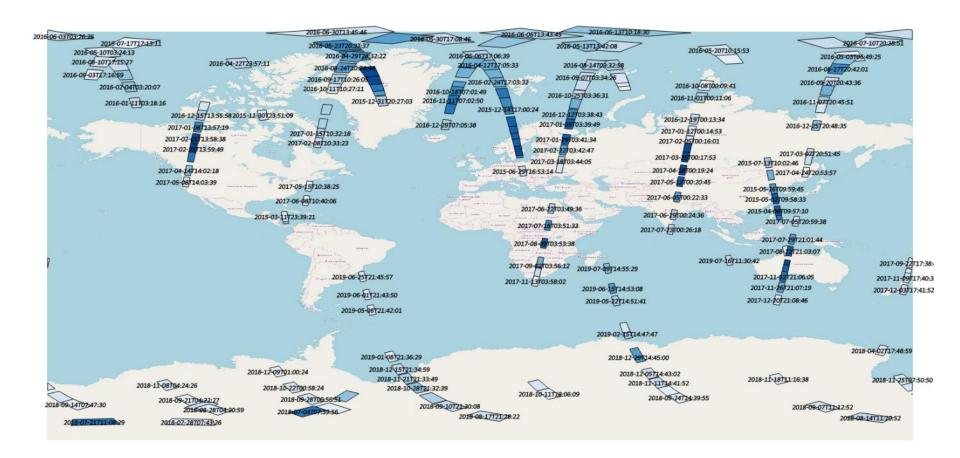
- Select a couple of spacecraft (S-1 A/B vs another)
- Screen distance between the two spacecrafts and detect times of nearest distance
- Check if S-1 data was acquired
- Check if RFI is observable
- If possible: Check if the other spacecraft was transmitting at the same time


SENTINEL-1A VS RADARSAT-2

1-A vs RS-2: Potential scene coverage at nearest distance

From 2014-sept to 2019-sept

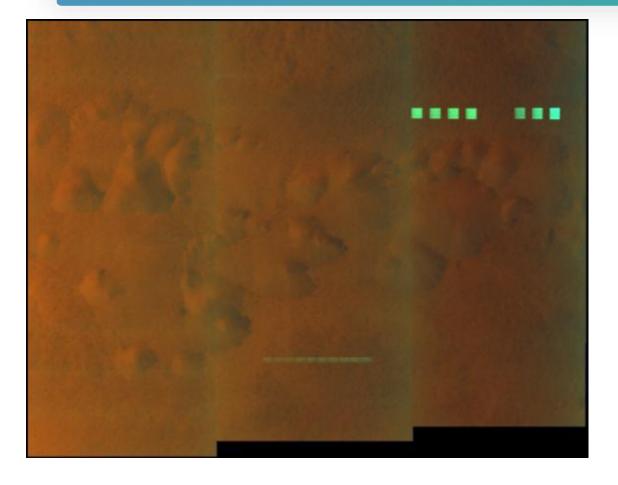
Color code: increasing acquisition date is darker



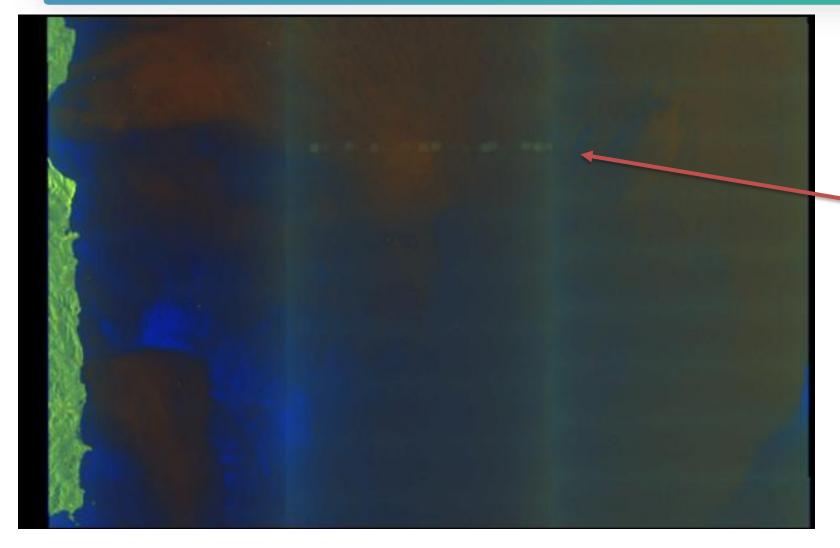
Orbit cycle is 24 days for RS-2 (vs 12 days for S-1A). 7 proximity configuration per cycle. Crossing slowly moving along orbit from one cycle to another Shortest distance between S/C at crossing: 95 to 105 km

S-1A vs RS-2: Available scenes at nearest disttance

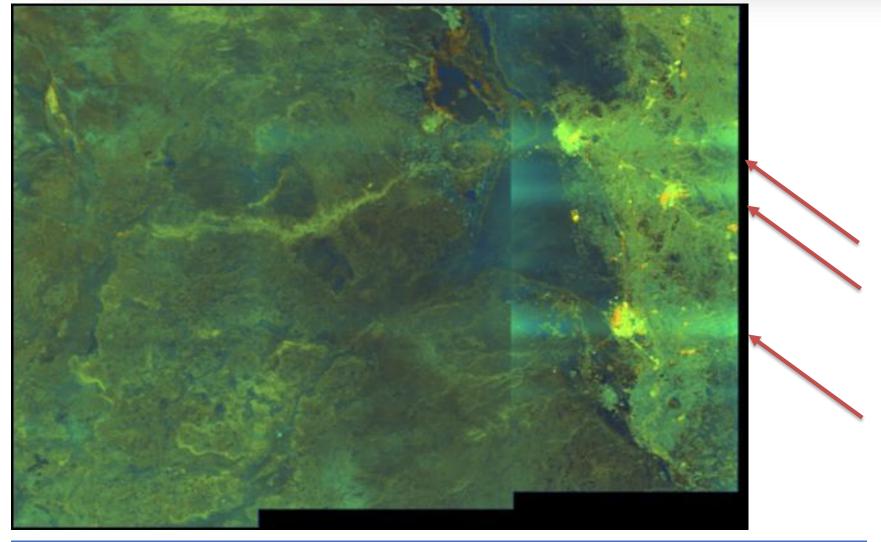
From 2014-sept to 2019-sept


Color code: nb of S-1A scenes within +/- 5mn around each crossings

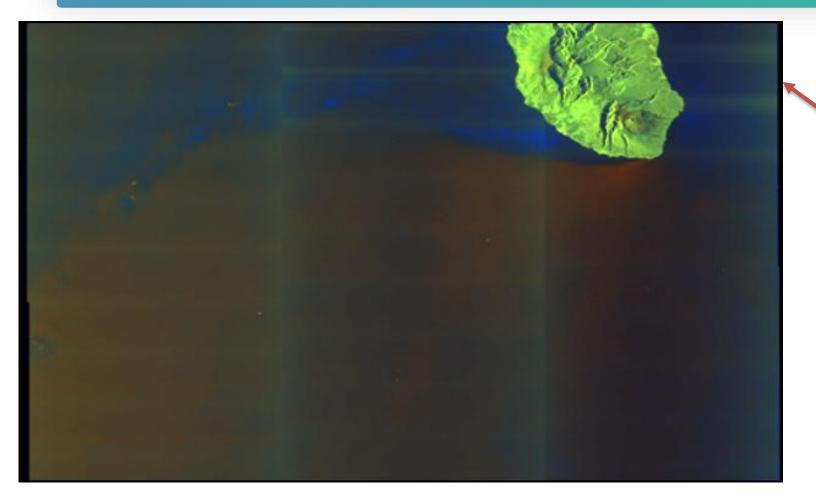
107 times of proximity identified 38 of them with S-1A acquisitions


S1A_IW_GRDH_1SDV_20180402T184050_20180402T184119_021292_024A1F_14A5

- Not a « massive » signature of RFI
- However, Radarsat-2 was in operation around that time


						RS-2	
startQuery	endQuery	nbS1Products	RFI Observable	RFI Location	RFI Date	acquisition	RS-2 Details
02/04/2018	02/04/2018	3					
18:39	9 18:44	ļ.	7 Yes		18:40:5	50 Yes	18:43: WideF (F0W1)

S1A_IW_GRDH_1SDV_20190119T052035_20190119T052100_025542_02D546_824C

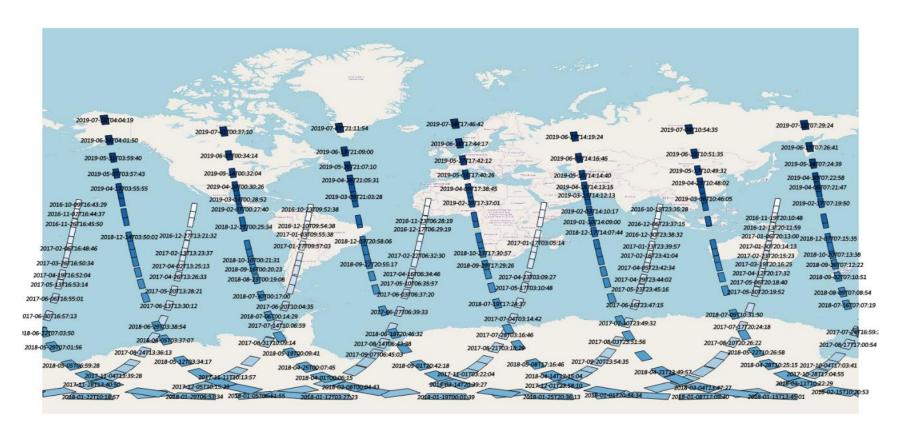

startQuery	endQuery	nbS1Products	RFI Observable	RFI Location	RFI Date	RS-2 Acquisition	RS-2 Details	
19/01/2019 05	5:14 19/01/2019 05	:25	23 Yes	Sardaigna	05:20:	35 Yes	05:12 to 05:20 SCWA, MF(MF21F), U (U6), SCW1, U4, S3 (at 05:20:08)	\$68

S1A_IW_GRDH_1SDV_20190215T150741_20190215T150810_025942_02E3B5_2656

						RS-2	
startQuery	endQuery	nbS1Products	RFI Observable	RFI Location	RFI Date	Acquisition	RS-2 Details
15/02/2019 1	5:03 15/02/2019 15	5:14	10 Yes	Irak	15:07:	41 Yes	15:02 to 15:14 WideU, XF0W3 between 15:04 and 15:09, WideU U26, WideU U14, WideU (U1W2)
							→ ((e)

S1A_IW_GRDH_1SDV_20190522T145251_20190522T145316_027341_031575_8415

Weak interference Does not look like usual mutual interferences as identified up to now (sharper and shorter)


startQuery	endQuery	nbS1Products	RFI Observable	RFI Location	RFI Date	RS-2 Acquisition	RS-2 Details
22/05/2019 14:46	6 22/05/2019 14:57	,	10 Yes	Réunion	14:52:	51 Yes	14:52 SCWA
/H-RODA 8-22 nov 201	9						

SENTINEL-1B VS RS-2

1-B vs RS-2: Potential scene coverage at nearest distance

From 2016-sept to 2019-sept

Color code: increasing acquisition date is darker

Orbit cycle is 24 days for RS-2 (vs 12 days for S-1A). 7 crossings per cycle. Crossing slowly moving along orbit from one cycle to another Shortest distance between S/C at crossing: 95 to 105 km

S-1B vs RS-2: Available scenes at nearest distance

Color code: nb of S-1A scenes within +/- 5mn around each crossings

Much less acquisitions in configuration of proximity compared to S-1A

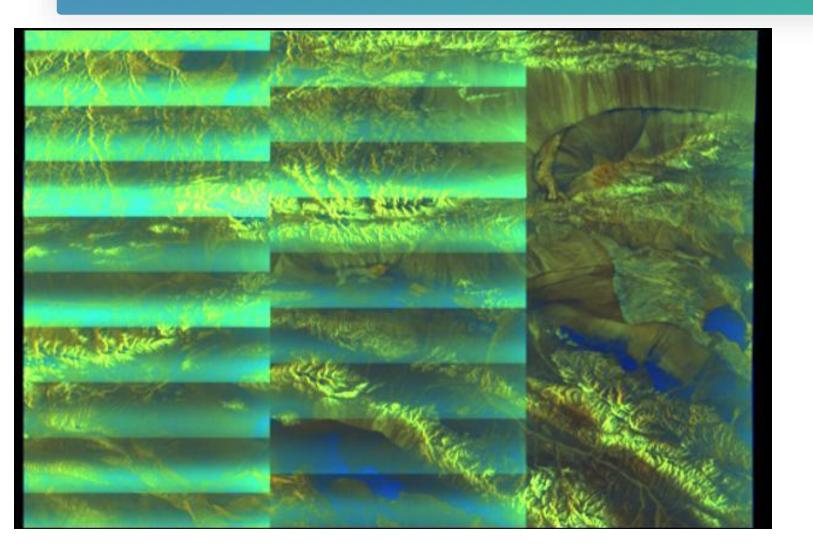
SENTINEL-1A VS GAOFEN-3

1-A vs GF-3: Potential scene coverage at nearest distance

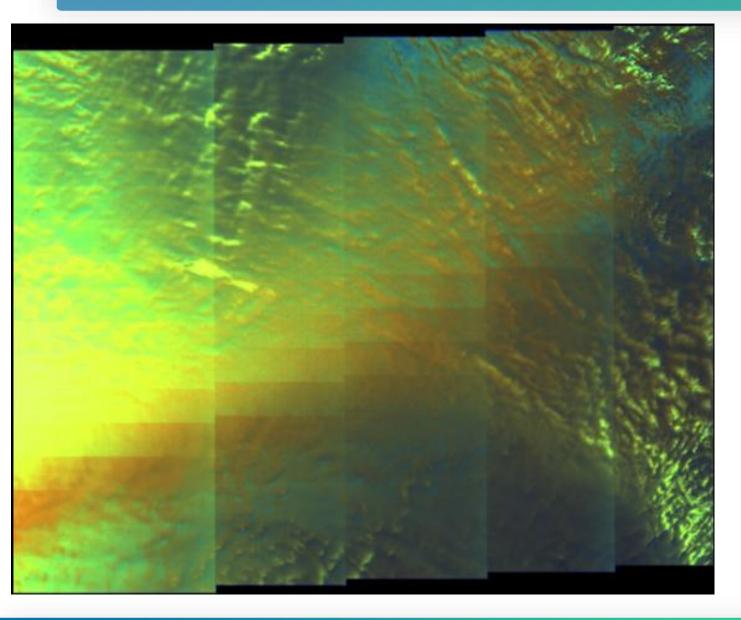
From 2016-oct to 2019-Sept

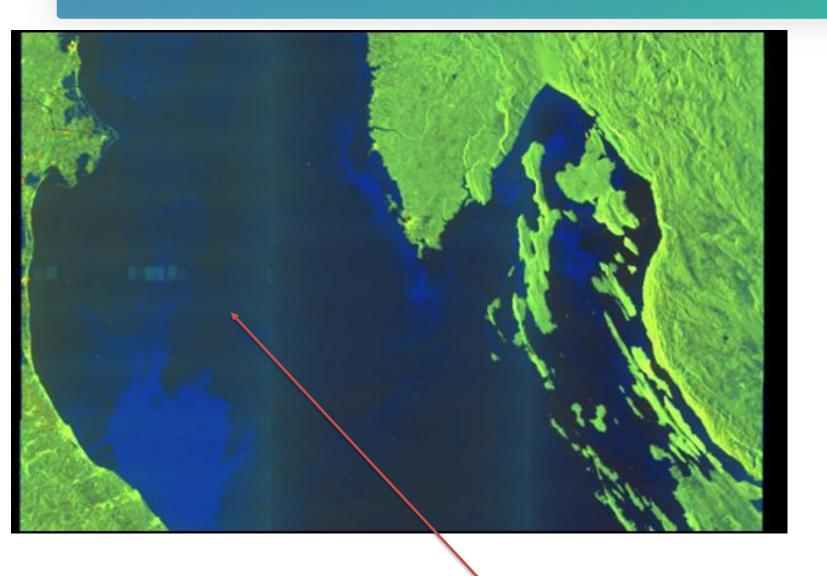
Color code: increasing acquisition date is darker

Orbit cycle is 29 days for GF-3 (vs 12 days for S-1A). Shortest distance between S/C : 55 to 70 km


S-1A vs GF-3: Available scenes at nearest distance

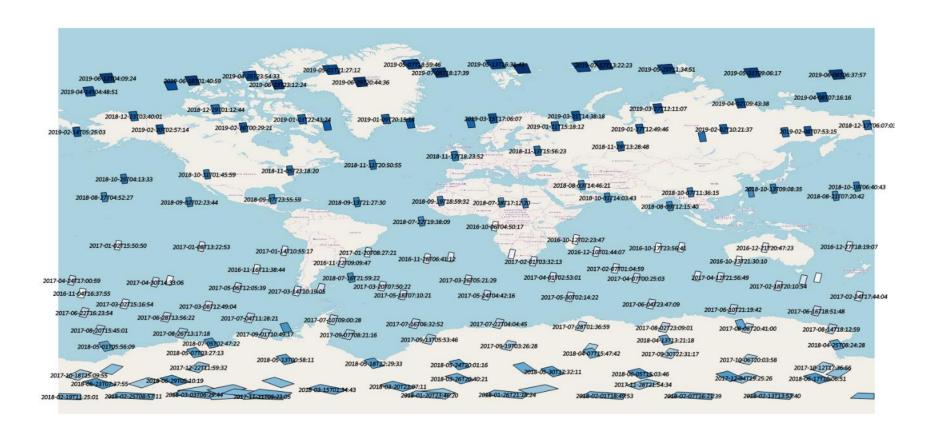
From 2016-oct to 2019-Sept


Color code: nb of S-1A scenes within +/- 5mn around each crossings


S1A_IW_GRDH_1SDV_20180812T120009_20180812T120034_023213_0285CA_1E6B

S1A_EW_GRDM_1SDH_20171213T164154_20171213T164245_019686_021748_A2B2

S1A_IW_GRDH_1SDV_20180731T165812_20180731T165837_023041_02804F_2C63



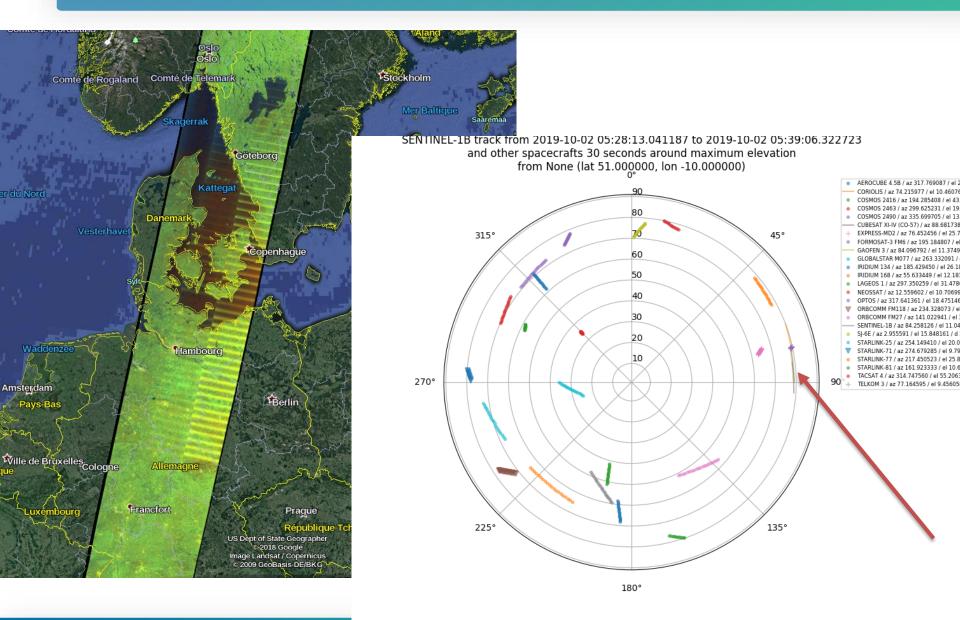
SENTINEL-1B VS GAOFEN-3

1-B vs GF-3: Potential scene coverage at nearest distance

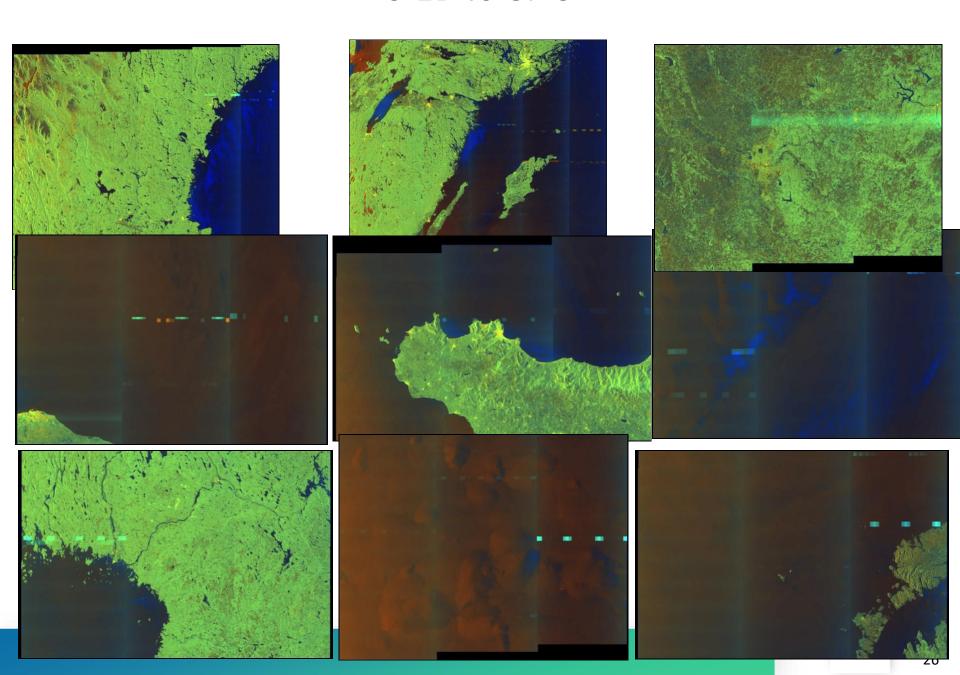
2016-Sept to 2019-Sept

Color code: increasing acquisition date is darker

Orbit cycle is 29 days for GF-3 (vs 12 days for S-1A). Shortest distance between S/C : 55 to 84 km


S-1B vs GF-3: Available scenes at nearest distance

2016-Sept to 2019-Sept


Color code: nb of S-1A scenes within +/- 5mn around each crossings

S-1B 2019-10-02T05:28

S-1B vs GF-3

SENTINEL-1A VS RCM-1/2/3

S1-A vs RCM-1/2/3: Potential scene coverage at nearest distance

From 2019-Jun to 2019-Nov
Color code: increasing acquisition date is darker

RCM 1/2/3 progressively reaching their nominal orbit Orbit cycle is 12 days for each RCM unit (vs 12 days for S-1A) Poximity over 4 areas

S1-A vs RCM-1/2/3: Available scene coverage at nearest distance

From 2019-Jun to 2019-Nov

Color code: increasing acquisition date is darker

Two sites without S-1A acquisitions Cooperation between ESA & CSA?

S-1A vs RCM

Baltic Sea

SENTINEL-1B VS RCM-1/2/3

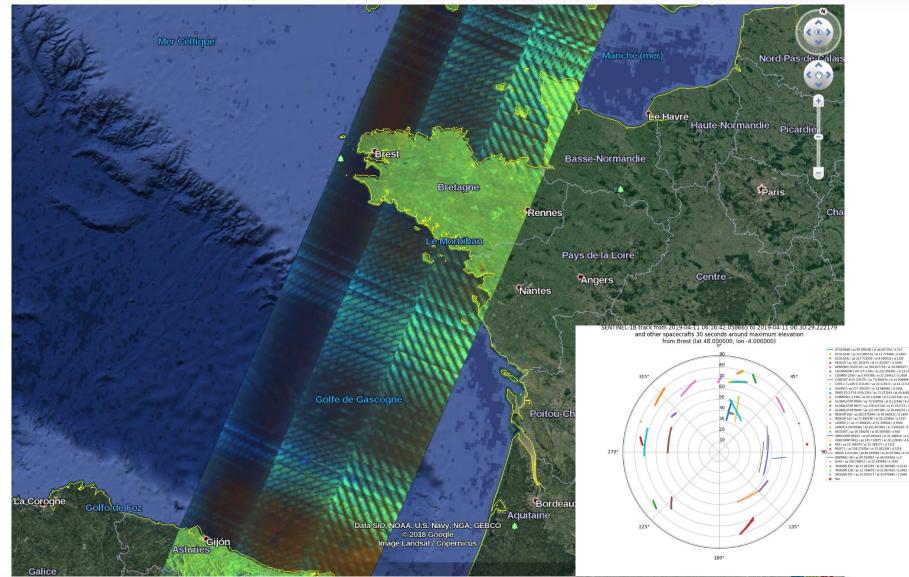
S1-B vs RCM-1/2/3: Potential scene coverage at nearest distance

From 2019-Jun to 2019-Nov Color code: increasing acquisition date is darker

RCM 1/2/3 progressively reaching their nominal orbit Orbit cycle is 12 days for each RCM unit (vs 12 days for S-1A) Proximity over 4 areas

S1-B vs RCM-1/2/3: **Potential** scene coverage at nearest distance

From 2019-Jun to 2019-Nov Color code: increasing acquisition date is darker


4 sites without S-1B acquisitions Cooperation between ESA & CSA?

Conclusion

- Number of configuration of mutual RFI increases with new missions
- Prediction of proximity other spacecrafts allows a better monitoring of RFI
 - Location of RFI are either concentrated or shifting or spread over the globe
- Not always very long RFI signatures
 - Depends on mode and acquisition duration of the second instrument
- Acquisition plan of S-1 seems to consider RCM as a potential source of RFI
- Gaofen-3 is a source of very large interferences
- But some sources of interferences still to be identified...

Sentinel-1B 2019-04-11 vs unknown emiter

