

Preliminary results from the independent SAOCOM commissioning phase

DATE:	6 th December 2018
ISSUE:	1.0
AUTHOR:	ARESYS SAR Area Team

 TÜVRheinland CERTIFIED
 Management System ISO 9001:2015

 Www.tuv.com ID 9105081902

Outline

- SAOCOM introduction
- ARESYS' involvement in SAOCOM
- Commissioning Phase activities plan
- Status of the processor
- Outlook

SAOCOM mission overview

- Satellites: Constellation of 2 twin satellites
- Orbit: sun-synchronous, 625 650 Km altitude
- Payload: L-band SAR instrument, 50 MHz band
- Antenna: full-pol, active array antenna (7 x 20 phase centers)

SAOCOM Quad POL swaths: overview

TOPSAR mode chosen to maximize coverage versus geometric & radiometric resolution

• **10 quad-pol beams** in elevation allow maximum coverage of 220 KM

• 3 different spatial resolutions [m]

- 100 (az) x 10 (rg) WIDE
- 50 (az) x 10 (rg) NARROW
- 6 (az) x 10 (rg) STRIPMAP
- The TOPSAR mode is exploited :
 - LOW scalloping
 - Wide coverage
 - High resolution
 - Scanning timeline optimization
 possibility

The SAOCOM_DUAL POL swaths: overview

Radar timing design: PRF switch round orbit strategy

X With roll steering
✓ 1PRF round orbit
✓ Complete design available at PDR
✓ Simplest
instrument operation
☞ ASTRIUM patent

 No roll steering
 2 PRFs round orbit
 Minimum PRF set without roll steering
 X PRF switch over
 Argentina
 Very similar performances
 Selected baseline

-20°

-58

PRF1

Solution C

© Aresys SAR Area

Impact of PRF change on processing chain

✓ Impact is only on STRIPMAP mode

Data re-sampling solution Split product solution Level-0 Data PRF1 PRF2<PRF1 Level-0 Data Bank FIR FFT PRF1 PRF2<PRF1 filter Ingestion Ingestion interpolation computation (Azimuth) Azimuth FIR filter Ingestion resampling Ingestion SSP SSP Merging Common PRF raw Data \mathbf{v} SSP Level-1 Data Level-1 Data IMPLEMENTED SOLUTION Level-1 Data ✓ No coverage loss ✓ Performance ✓ Simple solution ✓ No splitting X Performance, complexity X Coverage loss at PRF switch boundaries (~15 Km)

7

SIASGE compatibility: requirements

SAOCOM and the italian COSMO-SKYMED shall cooperate to give joint "X+L" SAR products

Description
 The SIASGE System shall be able to provide joint X+L products, taking into account the following mandatory constraints: Minimization of the events time de-correlation by availability of SAR coherent images; Minimization of the cross geometric distortion between the two sensors;
Maximization of the swath overlapping.
 The Reference Acquisition Mode for both SAR Bands shall be given respectively by the following Stripmap Baseline Mode: the Stripmap HIMAGE mode in X-Band and the Stripmap High Resolution Single Polarization mode in L-Band.

COSMO-SkyMed SAOCOM	Stripmap HIMAGE	ScanSAR Wide	ScanSAR Huge
Stripmap DP/(QP) Mode	40/(30) x 40 Km ² 10 m resolution	N.A.	N.A.
TopSAR DP/QP Narrow	N.A.	100 x 100 Km ² 50 m resolution	N.A.
TopSAR DP/QP Wide	N.A.	N.A.	200 x 200 Km ² 100 m resolution

© Aresys SAR Area

CEOS Workshop, Buenos Aires 5th-7th December 2018

COSMO vs. SAOCOM: the role of antenna size

In a SAR, performances in terms of pixels imaged, are constraned by the antenna size.

Resolution⁻¹ \times Swath width = k \times Antenna Area

SAOCOM has huge size compared to COSMO, when measured in m^2 - FACTOR 3.4

However when sizes are given in wavelengths, the proportions are by far favorable to COSMO. FACTOR 14.

The Quad-Pol capabilities, reduce the equivalent size by an additional factor 2.

 In the SWATH / RESOLUTION tradeoff, COSMO performs better by a factor 14, that becomes 28 to account for Quad-Pol.

10

SIASGE compatibility: the Stripmap Dual-pol swaths

QUAD/DUAL POL data processing: basic-products overview

CEOS Workshop, Buenos Aires 5th-7th December 2018

Advancing remote sensing

SAR Processing chain overview

SSP performance: the first datatakes

- SSP is integrated in the Cordoba Ground Segment (CUSS), providing SAR data processing from L0 to L1
- After launch, it is being exploited to process the acquired datasets

ltem	Stripmap	TOPSAR	remarks
Number of processed scenes	20+	5	No notch and TOPSAR dual pol
Normal priority Issues	1	0	
High priority issues		1	L1D products generation
Blocking issues	None	None	

SAO-CP: Aresys tools for SECF

- Aresys has provided a set of tools to be integrated within the SAR Engineering Calibration Facility (SECF) framework:
 - Elevation pointing tool: a tool for the estimation of the roll mis-pointing from Notch acquisitions over homogeneous areas (e.g. Rain Forest)

> SAR modes design and performance tools: a set of interactive tools for

- i. Beam design optimization
- ii. Antenna excitation coefficients optimization
- iii. L1 Processing parameters optimization and L1 performance prediction

Polarimetric calibration tool: a tool based on a covariance matching approach (COMET) to estimate channel imbalance and cross-talk from fullpolarimetric SLC data including a transponder

SAO-CP: Aresys independent assessment

- Aresys has been appointed by CONAE to perform an independent processing and analysis of the data during commissioning phase, providing an independent assessment of:
 - **Radiometric calibration**: absolute from point targets RCS analysis (CRs and transponder) and relative from distributed target areas such Rain Forest (Amazonia and Congo)
 - **Pointing calibration:** elevation pointing calibration from Notch acquisitions and azimuth pointing calibration from data Doppler Centroid estimates
 - > **IRF analysis**: IRF parameters (resolution, side lobes, ...) from acquisitions over CRs and transponder
 - Geometric calibration: azimuth and range localization accuracy from acquisitions over CRs and transponder
 - **Polarimetric calibration:** co-registration offsets, channel imbalance and & cross-talk estimation

16

Rain Forest calibration areas

ares

Region	NW Latitude [deg]	NW Longitude [deg]	SE Latitude [deg]	SE Longitude [deg]
Amazon Rain Forest	-4,99	-70,54	-9,13	-65,67
Congo Rain Forest	3,60	21,44	-2,64	29,26

17

CEOS Workshop, Buenos Aires 5th-7th December 2018

Aresys CP activities plan

Image Type	Analysis	Calibration type	Notes	
	Spatial resolution	IRF analysis		
	Peak-to-Side Lobe Ratio	IRF analysis		
Point target	Integrated Side Lobe Ratio	IRF analysis		
	Localization	Geometric	Comparison against known target location	
Rain Forest	Elevation Antenna Pattern	Radiometric	Assuming flat γ-profile	
	Azimuth scalloping	Radiometric	TopSAR data only	
	Equivalent Number of Looks	Radiometric		
Elevation notch	Roll mis-pointing estimation	Pointing		
Full-pol data	Channel imbalance	Polarimetric	Data shall include PARC	
	Cross-talk	Polarimetric		
Transponder data	Azimuth Antenna Pattern	Radiometric	Two way from the data, TX only from transponder records	
Any data	Azimuth pointing estimation	Pointing	From data Doppler Centroid estimates	

Summary and outlook

- ARESYS involvement in the SAOCOM mission and commissioning phase has been presented
- Today, SAOCOM SAR Processor is successfully running in the CONAE GS
- No blocking issues have been reported during the processing of the first acquisitions after launch
- We look forward to the start of the Commisioning Phase to start with the calibration tasks.

