

Results of the SAOCOM Commissioning Phase independent Cal/Val activities

VENUE:

SESION:

AUTHORS:

CEOS SAR Workshop, ESRIN, 18th-22nd November 2019

Calibration Techniques #1

Andrea Recchia1, Davide Giudici, Simone Mancon, Antonio Valentino, Martin Steinisch

Management System ISO 9001:2015

w.tuv.com

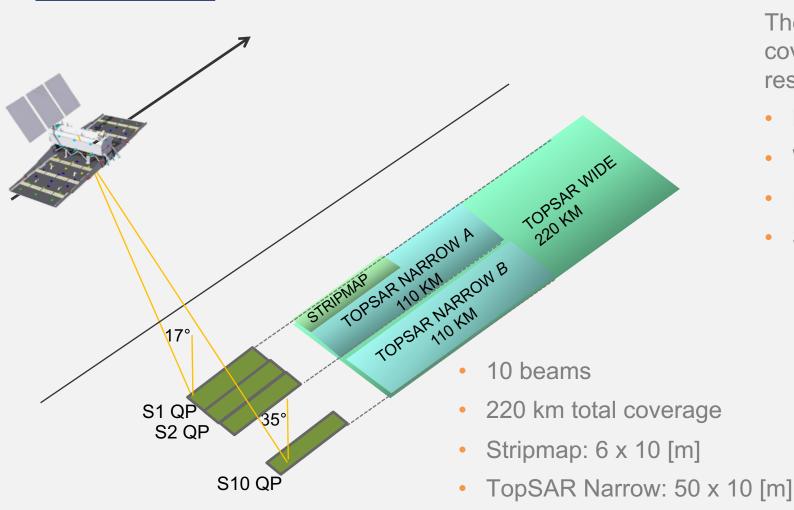
Outline

SAOCOM mission overview

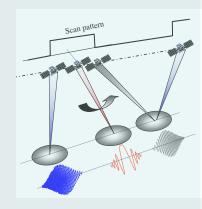
SAOCOM Commissioning Phase

Results from ARESYS independent CP

Conclusion

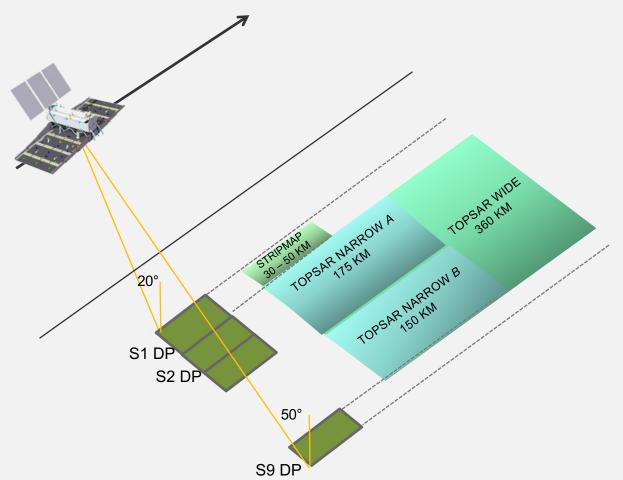

SAOCOM mission overview

- Satellites: Constellation of 2 twin satellites
- Orbit: sunsynchronous, 625 – 650 km altitude
- Payload: L-band SAR instrument, 50 MHz band
- Antenna: full-pol, active array antenna (7 x 20 phase centres)


SAOCOM Quad POL mode

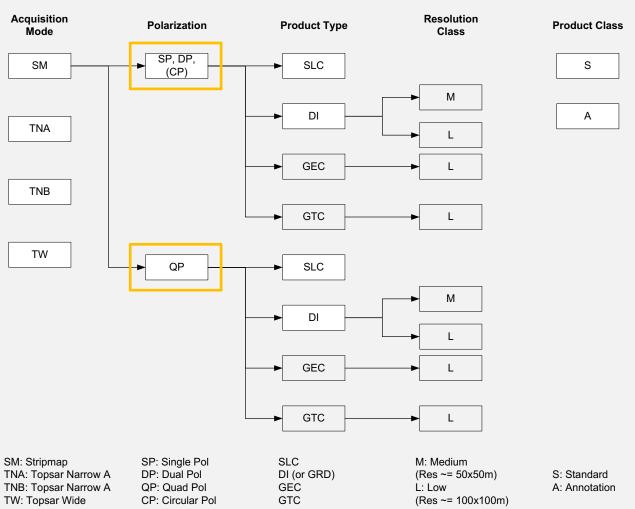
The TOPSAR mode is chosen to maximize coverage versus geometric & radiometric resolution:

- LOW scalloping
- Wide coverage
- High resolution
- Scanning timeline optimization possibility



TopSAR Wide: 100 x 10 [m]

SAOCOM Dual POL mode



- 9 beams
- 430 km maximum coverage
- 360 km total coverage
- TopSAR mode is also exploited
- Stripmap: 5 x 10 [m]
- TopSAR Narrow: 30 x 10 [m]
- TopSAR Wide: 50 x 10 [m]

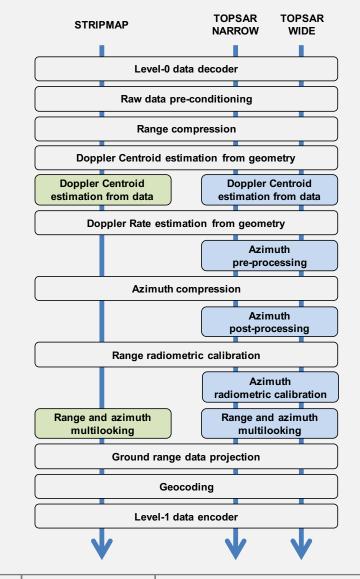
SAOCOM products tree

- > 8 Modes
- > 5 products per mode:
 - Single Look Complex (SLC): Complex data in slant range, radiometrically calibrated with no geometric corrections.
 - Detected Image (DI): Data projected to ground range, radiometrically calibrated and georeferenced (Medium and Low resolutions).
 - Ground Ellipsoid Corrected (GEC):
 Radiometrically calibrated, geocoded and georeferenced.
 - Ground Terrain Corrected (GTC):
 Radiometrically calibrated, geocoded using DEM and georeferenced.
- > 40 Imaging Products

SAOCOM Commissioning Phase

- SAOCOM-1A was successfully launched on 7th October 2018
- The first months of the mission have been dedicated to the functional verification of the instrument
- The first image was acquired on 25th October 2018
- The calibration and validation activities of the CP have started in December 2018
- SAO-1A CP completed on 30th September 2019, TopSAR verification activities under completion
- SAOCOM-1B launch foreseen for March 2020

Detail of the first SAOCOM-1A image: StripMap (DS5), Dual Pol (DV) Composed image (R: VH, G: 2VH + VV, B: VV)



SAOCOM: ARESYS involvement

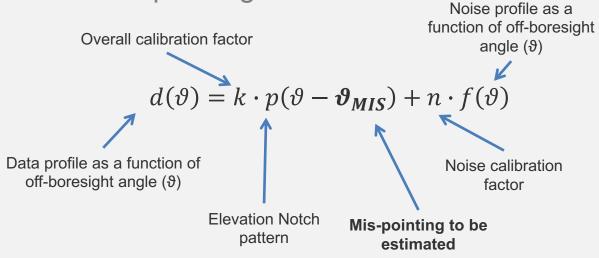
ARESYS has been involved in SAOCOM program since the early phases of the mission:

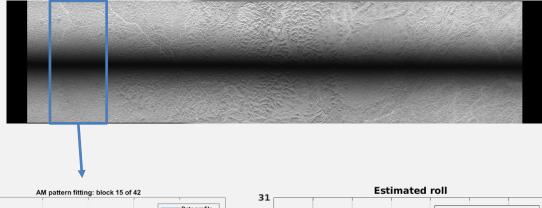
- System design: ARESYS was responsible of the SAR modes design and of SAR performance calculation (including TopSAR modes)
- Operational processor: ARESYS developed the SAOCOM SAR Processor (SSP), the highly tailored operational SAR processing solution selected by CONAE for the SAOCOM L-Band SAR mission ground segment. SSP natively manages the all the SAOCOM acquisition modes including STRIPMAP, TOSAR Narrow and TOPSAR Wide modes.
- System calibration: ARESYS provides expert support and analysis tools for the Commissioning Phase activities

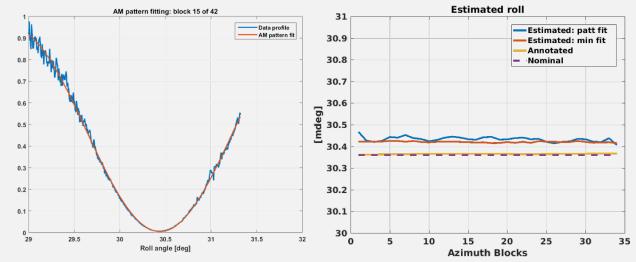
ARESYS independent SAOCOM CP

ARESYS has been appointed by CONAE to perform an independent processing and analysis of the data during commissioning phase, providing an independent assessment of:

- Radiometric calibration: absolute from point targets RCS analysis (CRs and transponder)
 and relative from distributed target areas such Rain Forest (Amazonia and Congo)
- Pointing calibration: elevation pointing calibration from Notch acquisitions and azimuth pointing calibration from data Doppler Centroid estimates
- IRF analysis: IRF parameters (resolution, side lobes, ...) from acquisitions over CRs and transponder
- Geometric calibration: azimuth and range localization accuracy from acquisitions over CRs and transponder
- Polarimetric calibration: co-registration offsets, channel imbalance and & cross-talk estimation




Elevation Pointing calibration


 Dedicated Elevation Notch acquisitions have been performed to verify the SAOCOM roll pointing

 The data elevation profiles are fitted with a three parameters model to estimate the actual sensor

elevation pointing

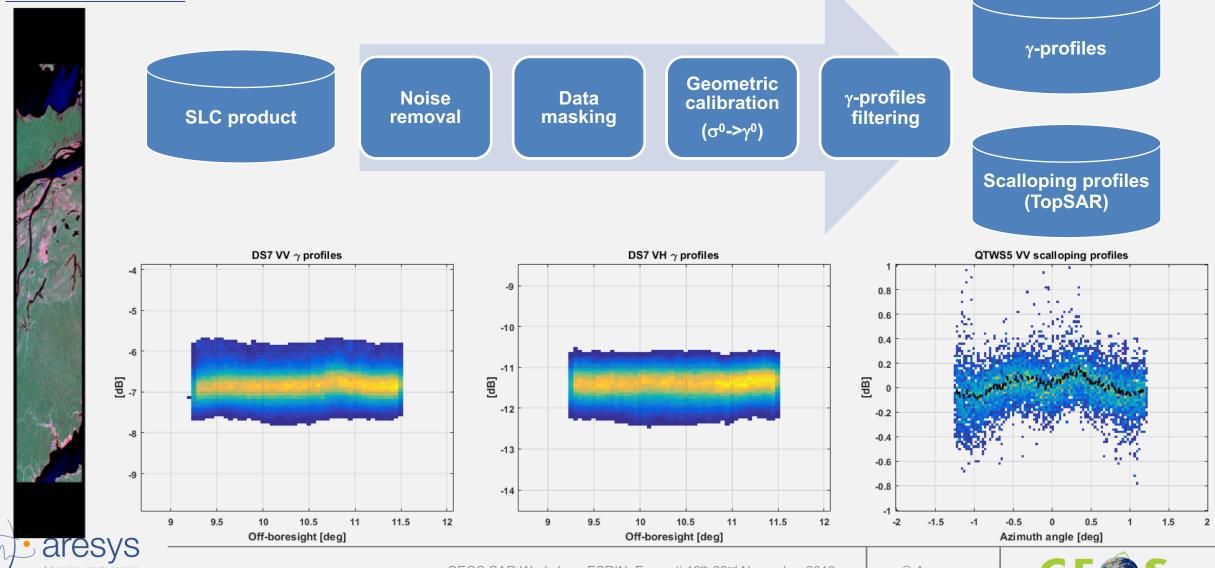
Elevation Pointing results

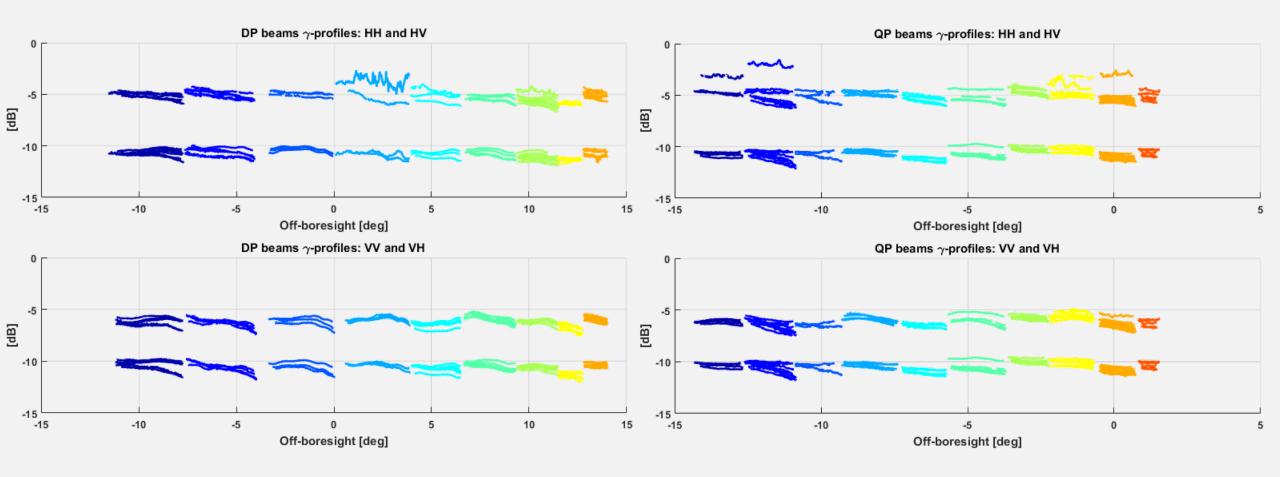
- 15 Elevation Notch products analyzed
- Consistent results from all the analyzed products
- Analysis of EN Rain Forest acquisitions (best accuracy) shows that the pointing is close to nominal with a small offset of +0.08 degrees
- The analysis of EN acquisitions all over the world (low accuracy due to data structures) shows no evident latitude dependent trends

ID	Date	Pol.	Length [s]	Pass	Location	Topography [m]	Roll Bias [deg]
3265	05/12/2018	DPH	46	Α	Congo	520	0.12
3221	06/12/2018	DPV	80	D	Congo	510	0.08
6490	19/01/2019	DPH	10	А	Canada	500	0.08
6492	19/01/2019	DPV	12	А	Canada	580	0.11
6494	19/01/2019	DPH	18	D	Argentina	60	0.05
6495	19/01/2019	DPV	19	D	Argentina	100	-0.04
6496	21/01/2019	DPH	18	D	Russia	240	0.16
6498	21/01/2019	DPV	12	D	Russia	265	0.14
6500	21/01/2019	DPH	17	А	Australia	110	0.05
6502	21/01/2019	DPV	8	А	Australia	205	-0.04
6504	21/01/2019	DPH	13	D	Australia	320	-020
6506	21/01/2019	DPV	11	D	Australia	1000	0.03
9809	16/02/2019	DPH	70	Α	Papua	120	0.09
10783	27/02/2019	DPV	86	Α	Congo	400	0.07
10784	28/02/2019	DPH	116	D	Amazon	100	0.07

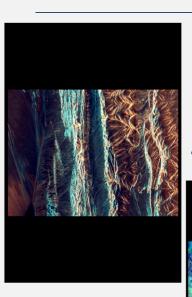
Rain Forest calibration sites

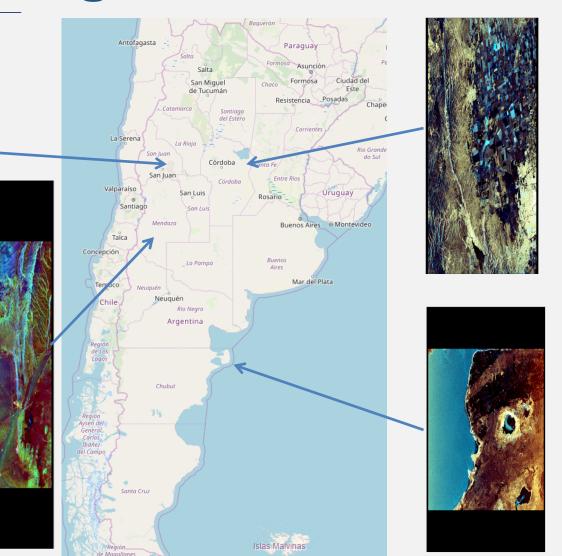
- 2 different Rain Forest areas (Amazon and Congo) are exploited for the CP calibration activities
- Stripmap and TopSAR acquisitions over Rain Forest are exploited to verify Elevation Antenna Patterns and beam-to-beam (relative) radiometric offsets (patterns are the same unlike S-1)
- The γ -profiles derived from the homogeneous areas of the RF are assumed to be flat
- TopSAR data are used to verify de-scalloping performance as well





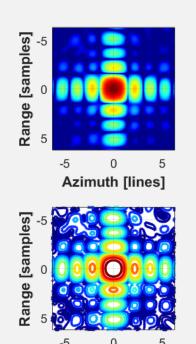
Rain Forest data processing


Rain Forest γ -profiles



Point target calibration sites

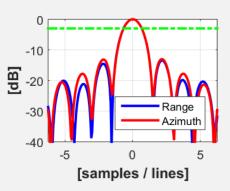
- Acquisitions over 4 dedicated calibration sites are planned to get absolute calibration and verify IRF properties
- 30 Corner Reflectors (3 m leg) and 1 Polarimetric Active Radar Calibrator
- Acquisition plan and pointing of the CRs optimised to ensure maximum coverage of the swaths to be calibrated

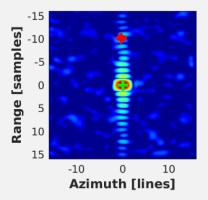


IRF analysis

All analyses performed with Aresys SAR Quality Toolbox, a collection of advanced and interactive tools for the assessment of the scientific quality of SAR data

Resolution


Range resolution: 6.7292 [m] Azimuth resolution: 4.9877 [m]


PSLR

Range PSLR: -13.4602 [dB] Azimuth PSLR: -13.0436 [dB]

ISLR

Range ISLR : -11.0173 [dB] Azimuth ISLR : -10.0833 [dB]

Azimuth [lines]

IRF Analysis

Localization Error

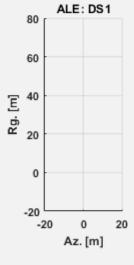
Range LE: 38.0321 [m] Azimuth LE: 1.2193 [m]

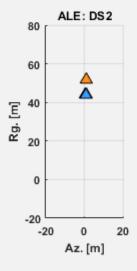
Resolution verification

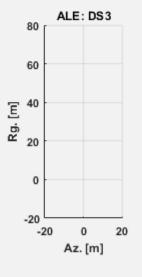
H/H V/V

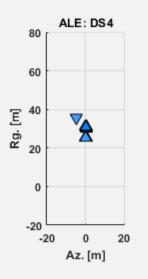
Beam	Rg. Res. [m]	Az. Res. [m]	Rg. Res. [m]	Az. Res. [m]
DS1		Theory	otical.	
DS2		Theoretical: 10 x 5 m		
DS3		10 X	3111	
DS4	9.40	5.16		
DS5	10.13	5.53	9.71	5.18
DS6	10.01	5.08	9.88	4.98
DS7	9.95	5.73	9.52	5.86
DS8	10.38	5.33	9.58	5.43
DS9			9.20	5.00

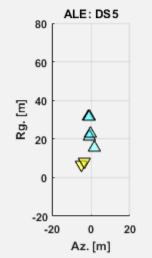
H/H	V		1	V
-----	---	--	---	---

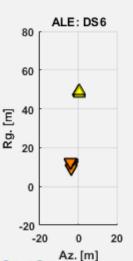

Beam	Rg. Res. [m]	Az. Res. [m]	Rg. Res. [m]	Az. Res. [m]
QS1	10.12	6.12	10.37	6.06
QS2		Theoretical:		
QS3				
QS4				
QS5	9.87	6.20	9.86	6.20
QS6	9.81	6.08	9.64	6-10
QS7	10.34	6.44	10.28	6.19
QS8	10.65	6.17	9.68	6.16
QS9				
QS10	10.13	6.07	10.15	6.01

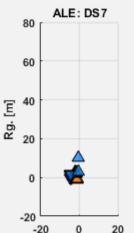




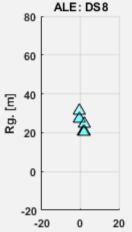

Geolocation accuracy: DS beams

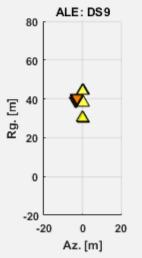

CAS CET MAN PIR SOS





- 2 days precise orbits
- No ionospheric/tropospheric correction
- No beam dependent instrument bias correction


Beam	Rg. ALE [m]	Az. ALE [m]
DS1		
DS2	48,60 ± 3,91	0,90 ± 0,15
DS3		
DS4	30,56 ± 3,58	-0,78 ± 2,15
DS5	16,90 ± 10,21	-2,03 ± 2,33
DS6	21,48 ± 16,81	-2,51 ± 1.,78
DS7	1,88 ± 2,89	-2,13 ± 1,29
DS8	25,14 ± 4,11	0,83 ± 1,25
DS9	37,91 ± 4,48	-1,66 ± 1,68



Az. [m]

Az. [m]

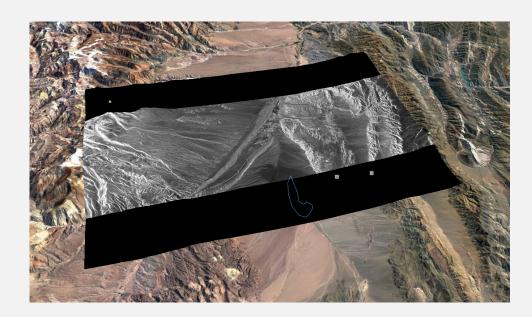
Geolocation accuracy: QS beams

ALE: QS1 ALE: QS2 ALE: QS4 ALE: QS5 ALE: QS3 80 80 80 60 60 60 60 60 CAS E 40 E 40 E 40 E 40 Rg. [m] **CET** MAN 0 SOS -20 -20 -20 -20 -20 -20 -20 -20 Az. [m] Az. [m] Az. [m] Az. [m] Az. [m] ALE: QS6 ALE: QS7 ALE: QS8 ALE: QS9 ALE: QS10 80 80 80 80 **Ascending** 60 60 60 60 60 ∇ E 40 E 40 E 40 Rg. [m] Descending 20 -20 -20 -20 20 20 20 20 20 -20 -20 -20 -20 -20 Az. [m] Az. [m] Az. [m] Az. [m] Az. [m]

- 2 days precise orbits
- No ionospheric/tropospheric correction
- No beam dependent instrument bias correction

Beam	Rg. ALE [m]	Az. ALE [m]
QS1	1,17 ± 8,41	0,48 ± 1,04
QS2	47,95 ± 0,20	-1,06 ± 0,34
QS3		
QS4		
QS5	22,25 ± 14,44	0,42 ± 0,58
QS6	11,01 ± 11,19	-3,46 ± 0,52
QS7	55,38 ± 10,50	0,27 ± 2,71
QS8	71,96 ± 0,61	-0,97 ± 0,45
QS9	30,37 ± 0,04	-3,26 ± 0,01
QS10	4,63 ± 0,15	-0,27 ± 0,47

© Aresys



Bonus track: SAOCOM interferometry

- SAOCOM mission is not purposefully interferometric
- TopSAR burst synchronization is not a mission requirement but could be possible in a few cases
- Stripmap interferometry is possible if normal baseline not exceeding critical baseline value

Interferogram over El Leoncito (CAS) calibration site in the Andes:

- Acq. 11847-S4DP-V (10th March 2019)
- Acq. 12499-S4DP-V (26th March 2019)

Obtained with ARESYS Generic Interferometric Processor

Summary and outlook

- Results of the Cal/Val activities independently performed by Aresys have been presented
- Cal/Val activities have been performed on a set of about 400 SAOCOM products
- Cal/Val activities for Stripmap are now complete. The presented results show that all the main quality parameters are within requirements
- Cal/Val activities for TopSAR are still on going
- Looking forward for SAOCOM-1B Commissioning Phase

