New Approach for SAR Antenna Pointing Determination

Jens Reimann, Patrick Klenk, Marco Schwerdt, Manfred Zink

German Aerospace Center - DLR

Microwaves and Radar Institute

Knowledge for Tomorrow

Introduction

- Antenna pointing calibration ensures a correctly aligned SAR antenna radiation pattern
 - Azimuth Pointing: for example using ground receiver measurements of an azimuth notch patterns
 - Elevation Pointing: gamma profile evaluation of notch patterns acquired over homogeneous distributed targets, like Amazon rain forest

Calibration Cente

Outline of the talk

- 1. Azimuth: Show results from pointing measurements using latest DLR transponders as ground receiver
- 2. Elevation: Introduce novel technique for pointing determination over non-homogeneous targets

DLR.de • Chart 4 > New Approach for SAR Antenna Pointing Determination > Jens Reimann • 8 Nov 2017

I. AZIMUTH POINTING

DLR's remote controlled Reference Targets

 Deployed and successfully operated for Sentinel-1 since April 2014

Calibration Center

- Being checked permanently
- Can be aligned for further spaceborne SAR missions

3 Corner Reflectors

- 2.8 m leg length => 49.2 dBm² RCS
- \leq 1.0 mm mech. tolerance
- 0.2 dB (1σ) abs. rad. accuracy

3 C-Band Transponders

- 5.405 GHz, 100 MHz BW, 60 dBm² RCS
- ≤ 0.1 rad. stability
- 0.2 db (1σ) abs. rad. accuracy

Ground Receiver Acquisition

- azimuth angles changes over time during satellite overpass
- tx power is constant but weighted by the antenna pattern
- azimuth cut through the antenna pattern can be recorded

DLR SAR

S1-B Azimuth Pointing Determination: Notch Pattern Evaluation

- Evaluation of transponder measured azimuth notch patterns for determining antenna azimuth pointing
- Very precise and efficient determination of azimuth pointing
- Elevation dependent azimuth squint indicates additional mispointing in pitch and yaw
- Based on stripmap notch acquisitions, but nominal acquisition baseline is IW

S1-AM Based Reconstruction of TOPS Mode Antenna Patterns

- In TOPS mode, several hundred beams switched for antenna steering in azimuth:
 - IW1: uses ABI 177...825
 - IW2: uses ABI 241...761
 - IW3: uses ABI 211...791
- high angular resolution of the steering in azimuth (0.002° steps)
- Measured TOPS pattern reconstructable based on accurate knowledge of:
 - image geometry
 - antenna excitation coefficients
 - sequence of steered azimuth and scanned elevation beams
 - correct timing synchronization of the data

S1 AM calculated elementary beams for IW1

S1-B – IW: D39 measured example with reconstructed pattern

measured Tx pattern AM estimated TOPS pattern measured max position estimated max position

DLR SAR

Calibration Center

S1 TOPS pattern / IW / D39 / 2016-06-27: with estimation result

satellite flight direction

T

D39

Overview of S1-B IW data acquisition over DLR transponders

- Each transponder records multiple main beams from several bursts
- Direct access to range variation of azimuth pointing

D40

D41

range

DLR SAR

Calibration Center

IW1

Overview of S1-B IW data acquisition over DLR transponders

- Each transponder records multiple main beams from several bursts
- Direct access to range variation of azimuth pointing

DLR SAR

Overview of S1-B IW data acquisition over DLR transponders

- IW: One sequence of bursts ideally yields 3x3 transponder recorded measurements
- Each transponder records multiple main beams from several bursts

DLR SAR

Calibration Center

 Direct access to range variation of azimuth pointing

IW3

S1-B: IW-Mode Main Beam Positions: Measured - Estimated

DLR.de • Chart 14 > New Approach for SAR Antenna Pointing Determination > Jens Reimann • 8 Nov 2017

II. ELEVATION POINTING

Novel approach for Tandem-L: Continuous notch monitoring

- Elevation pointing traditionally performed over homogenous distributed targets (such as the Amazon Rainforest) using the steep null in a notch-pattern
- Upcoming SAR missions using large deployable reflector antennas have no fixed antenna pointing due to limited stiffness of the huge structure
- Drawback: Intra-orbit pointing changes hardly detectable

Calibration Cente

Approach

Analyze the use of **inhomogeneous areas** for elevation notch based pointing determination

- Use of notch beam and a boresight beam
- Phase coherent pattern detection

Test of Continuous Notch Monitoring

Technique was verified using **TerraSAR-X**:

 two independent images generated by pulse-to-pulse switching of antenna pattern, alternatingly receiving nominal boresight and notch beam

Drawback: required high PRF causes small swath width and/or notable ambiguities

Goal for Tandem-L

 Use of digital beamforming (DBF) to simultaneously acquire boresight and notch beams

Calibration Cente

No degradation of swath width

TerraSAR-X modeled antenna pattern: Boresight vs. Notch

First results Permanent Notch Monitoring: Rainforest I

Boresight Beam 67.5 km

Notch Beam

- First example: Amazon
 Rainforest
 - Rather homogeneous rainforest scene
 - No explicit masking of river features / topography / potentially deforested areas

First results Permanent Notch Monitoring: Rainforest II

First results Permanent Notch Monitoring: China I

- second example: inhomogeneous area
 - North-Central China, Henan-Province
 - Ambiguities due to nonoptimized TSX antenna patterns for this acquisition mode (experimental dataset...)

DLR SAR

Calibration Center

67.5 km

First results Permanent Notch Monitoring: China II

- complex subtraction of SLC images
- azimuth averaging
- Notch position can be determined equally well

DLR SAR

Conclusions

Azimuth Pointing

TOPS based analysis of antenna pointing using ground receiver:

- feasible for regular monitoring of azimuth pointing
- more data with larger variance available

Elevation Pointing

Differential analysis of concurrent boresight and notch beam acquisitions: elevation pointing monitoring over non-homogeneous areas feasible applicable for continuous pointing monitoring for future DBF based missions

First Results: Summary Rainforest

