SAR Pointing Calibration for Ocean Surface Radial Velocity Estimation: Challenges and Alternatives

Dirk Geudtner ${ }^{1}$, Francisco Ceba Vega¹, Sergio Bras¹, Mike Kubanski², Bernhard Rabus ${ }^{2}$, and Andrea Recchia ${ }^{3}$
${ }^{1}$ ESA-ESTEC
${ }^{2}$ Simon Fraser University, Vancouver, Canada
${ }^{3}$ Aresys, Italy

Background \& Motivation

Radial Velocity Estimation: Doppler Centroid Anomaly

ENVISAT/ASAR

- Demonstration of feasibility using Doppler Centroid Anomaly (DCA) to estimate ocean surface radial velocity

$$
\begin{gathered}
\omega_{D}=2 \pi f_{D}=\frac{d \varphi}{d t}=\frac{4 \pi}{\lambda} \frac{d R}{d t}=\frac{4 \pi}{\lambda} v_{r a d} \\
f_{D}=\frac{2 v_{r a d}}{\lambda} \\
f_{D C A}=f_{D C_{S A R}}-f_{D C_{p o i n t}} \\
\text { measured } \\
f_{D C_{\text {point }}}=f_{D C_{A T T}}+f_{D C_{m e c h}}+f_{D C_{e l e c}} \\
\text { pointing knowledge }
\end{gathered}
$$

- Estimation of $f_{D C_{A T T}}$ using AOCS quaternions

M. J. Rouault, A. Mouche, F. Collard, J. A. Johannessen, and B. Chapron, "Mapping the Agulhas Current from space: An assessment of ASAR surface current velocities," J. Geophys. Res. Ocean., vol. 115, no. 10, pp. 1-14, 2010.

Sentinel-1

- Calibration over land (homogeneous areas) for estimation of $f_{D C_{p o i n t}}$

Sentinel-1 Radial Velocity Estimation

Sentinel-1 Radial Velocity (RVL) product relates Doppler Centroid Anomaly (DCA), i.e. geophysical Doppler, to ocean surface radial velocity using IW and WV mode data DCA estimation:

- $f_{D C_{S A R}}$ (blue): estimated in SAR image - $f_{D C_{A T T}}$ (black): based upon knowledge of on-board platform attitude (quaternions)
- $f_{D C_{R E S A T T}}$ (red): Restituted attitude, estimated onground to improve platform attitude knowledge

- $f_{D C_{e l e c: ~}}$ based upon Antenna Model
\Rightarrow Major focus on estimation of $f_{D C_{A T T}}$ and $f_{D C_{R E S A T T}}$
e. q. using area with stable and homogeneous backscatter (Amazon)

Sentinel-1 Attitude Knowledge vs Doppler

- Doppler Centroid bias variation (jumps) due to mis-alignment between Star Trackers (3 different combinations)

Improvements:

- STT re-alignment campaign and relativistic light aberration correction
- Optimization of AOCS gain (Kalman filter) settings
- Improvements in estimation of Restituted Attitude
- Gyro-based (no STT) Restituted Attitude

Attitude Knowledge Requirements

Attitude error

$$
f_{D C A}=f_{D C_{S A R}}-f_{D C_{p o i n t}}
$$

Doppler offset due to pointing (spacecraft attitude +antenna):

$$
f_{D C_{\text {point }}}=f_{D C_{A T T}}+f_{D C_{\text {minting knowledge }}}^{\underbrace{}_{\text {calibration }}+f_{D C_{\text {elec }}}}
$$

$$
f_{D C_{A T T}}=\frac{2}{\lambda} v_{S a t} \sin \sigma \Rightarrow \sin \sigma=P \cos \vartheta_{e l e v}-Y \sin \vartheta_{e l e v}
$$

$$
\sigma: 1 m d e g \cong f_{D C_{A T T}}: 4.6 \mathrm{~Hz} \quad \text { (C-band) }
$$

$$
f_{D}=\frac{2 v_{r a d}}{\lambda} \Rightarrow v_{r a d}=v_{s a t} \sin \sigma
$$

Requirement: $\delta v_{r a d} \cong 0.1 \mathrm{~m} / \mathrm{s} \Rightarrow \sigma \cong 0.76 \mathrm{mdeg}$
Ideally: $f_{D C_{A T T}} \cong 2 \mathrm{~Hz} \Rightarrow \sigma \cong 0.43 \mathrm{mdeg}$ (knowledge)
\Rightarrow Challenge to achieve with state-of-the AOCS (star tracker, gyro, etc)

eSA UNCLASSIFIED - For Official Use

Line-of-sight velocity

Sentinel-1 L2 RVL Product

- Studies on ocean signature analysis, e.g. estimation of gradient wall location of the Gulf stream current
- Synergistic acquisitions of RADARSAT-2 and Sentinel-1 data (S-1 RVL product)
\Rightarrow using relative radial velocity (only)

- current RVL product shows non-geophysical artifacts, not related to attitude knowledge
- residual ramps in azimuth
- varying Doppler biases from swath to swath (discontinuities),
- different Doppler trends across range
tps://doi.org/10.1080/07038992.2019.1662284

TOPS De-ramping Function

- Large Doppler variation (5 kHz) due to TOPS azimuth beam steering
- De-ramping operation results in the demodulated signal
$s_{d}(t) \approx \beta \cdot \exp \left(j \pi k_{e f f}\left(t-t_{0}\right)^{2}\right) \cdot\left(j \pi k_{s}\left(t_{0}{ }^{2}-t_{\text {mid }}{ }^{2}\right)\right) \cdot \exp \left(-j 2 \pi k_{s}\left(t_{0}-t_{\text {mid }}\right) \cdot t\right)$
β contains the azimuth weighting and range phase terms
$k_{e f f}=k_{a}-k_{s}$: effective chirp rate; $k_{a} \mathrm{Fm}$ rate, k_{s} : Doppler rate due to azimuth antenna steering center exponential term: residual phase term (no impact)
\Rightarrow last term is responsible for the demodulation: $t_{\text {mid }}$: burst center time
from Theory:
- Error in $t_{\text {mid }}$ causes asymmetries of antenna patterns \Rightarrow bias in Doppler \Rightarrow discontinuities between sub-swaths
- Error in steering rate \Rightarrow Pointing error w.r.t. steering angle causes (residual) Doppler variations along azimuth (ramps)

EW Mode: Doppler Centroid across Swath

S-1B EW Acquisition over Africa, 20160611

Doppler Centroid Frequency y cross swath for sice

Doppler Centroid frequency accoss swath for sice 7

EW Antenna Model Output: Gain and Phase

IW Mode: Doppler Centroid across Swath (ascending orbit)

S-1B IW Acquisition over North America, 20160909

Doopler Centroid freauency across swath for Slice 30

IW Mode: Doppler Centroid across Swath: (descending orbit)

S-1B IW Acquisition over North America, 20160909

Doppler Centroid Frequuncry ycaross Swath for Meen Llice 42

Doppler Centroid frequency acosss swath for sice 44

Doppler Centrioi freaunency arosss Swat for Sike 46

Doppler Centrobld Frequency across swath for slice 52

Doppler Centridid frequency across swart for sice 54

ESA UNCLASSIFIED - For Official Use

IW Antenna Model Output

Sentinel-1B SM: Doppler Centroid Results

- DC bias and slope as expected from theory (pitch and yaw attitude)
\Rightarrow Indicates that for IW and EW, the issues are related to TOPS and tapering of antenna pattern

S1B S4 GRDH 1SDV $20170920 T 22450420170920 T 224533007481$ 00D352 3A12 S1B_S5_GRDH_1SDV_20170929T100405_20170929T100433_007605_00D6DC_5648

Effect of Antenna Patterns on Doppler Centroid

- Doppler prediction on a point by point basis
- Doppler bandwidth is simulated for each output grid point
- Predicted Doppler Centroid is the weighted average of Doppler bandwidth, where weighting is given by antenna . patterns
$\xrightarrow{f_{\text {dop }}}$ Antenna gain
- Simulation of DC assuming perfect zeroDoppler geometry (no squint)
- DC is predicted using ideal symmetric theoretical patterns and antenna patterns (simulated from AM)
- Tapering of antenna patterns causes variations across range, and biases varying between sub-swaths \Rightarrow analysis on-going
ESA UNCLASSIFIED - For Official Use

Sentinel1-NG High-Level Mission Requirements

1. Continuity of C-band data beyond next decade (2030)

Ensure continuity of Copernicus services
\Rightarrow improve existing and support evolving operational applications Sentinel-1NG data quality shall be equal or better than S-1/A-D
(CMEMS Copernicus Maritime Environment Monitoring
(\mathbb{A} CEMS Copernicus Emergency Management Service CLMS Copernicus Land Management Service
(C3S Copernicus Climate Change Service
2. Better spatial resolution + shorter revisit time + improved radar sensitivity + full polarisation than currently achievable with Sentinel-1:

- Sea ice mapping (classification, drift monitoring, iceberg detection) \Rightarrow twice daily coverage above 60 deg. North
- Maritime surveillance (vessel detection) and Oil spill detection
 \Rightarrow once daily coverage north of +45 deg. (optionally +30 deg.) and south of -45 deg .
- Ice discharge monitoring in Arctic/Greenland + Antarctic ice shelves and glaciers
- Land deformation + Coherent Change Detection monitoring + precise Geolocation \Rightarrow min. 4-day repeat-pass interval for SAR Interferometry + systematic global coverage \Rightarrow ground resolution of $25 \mathrm{~m}^{2}\left(150 \mathrm{~m}^{2}\right)$ at instantaneous coverage of 400 km (min. 600km)

Sentinel1-NG High-Level Mission Requirements

3. Novel and innovative measurement capabilities to support:

- Detection of (small) vessels under challenging sea state conditions, and accurate estimation of their velocity
\Rightarrow Vessel size of min. 15 m length with 90% probability of detection and false-alarm of less than 2.5(10)-9
\Rightarrow Vessel velocity (total) estimation accuracy of less than 2 knots ($1 \mathrm{~m} / \mathrm{s}$)
using GMTI/ATI capability
- Ocean Surface Current Velocity estimation

Image courtesy: Ch. Gierull, DRDC
 \Rightarrow Ocean surface current velocity at accuracy of $0.1 \mathrm{~m} / \mathrm{s}$ for $500 \mathrm{~m}^{2}$ ground resolution cell size
using Along-Track Interferometry (ATI) vs. Doppler measurements

SAR Instrument Concepts and Launcher Compatibility

- Sentinel-1 NG multi-channel SAR system vs single-channel on Sentinel-1

Phased Array Antenna

Antenna Length: 12.8 m , Height: 1.2 m

- Electronics design based on S-1 heritage
- Antenna technology available in Europe
- ATI for velocity estimation (vessels, ocean currents)
- High transmit power (900W) and mass (2100 - 2600) kg

Vega E

Reflector Antenna + Hybrid Concept

Antenna: Diameter: 9m, Focal length: 9m

- Large and light antenna
- Low transmit power (300W) and mass (1500-2000 kg)
- Complex SAR instrument electronics
- Reflector antenna not available in Europe
- ATI capability only for Hybrid concept

Along-Track Interferometry (ATI) Concept

- Canada's RADARSAT-2: C-band SAR system capable of collecting ATI ScanSAR data on a single space-borne platform

Conclusions

- DCA approach for estimation of ocean surface radial velocity requires very precise pointing knowledge of both spacecraft (attitude) and SAR beam pointing \Rightarrow difficult to achieve with state-of-the-art AOCS systems (STTs)
- Estimation of DC in TOPS data requires perfect de-ramping taking into account the effective azimuth antenna steering rate (pointing) and knowledge of burst center time to avoid ramps
- Ramps in S-1 RVL products may be related to residual DC variation due to TOPS
- Tapering of antenna patterns, when projected onto the ground, seems to cause variations in DC offsets (discontinuities) and different slopes
- Simulations show that for symmetric antenna patterns there are no DC artifacts
\Rightarrow Single platform ATI may provide alternative and/or complementary solution to DCA approach for estimation of ocean surface radial velocity

Backup Slides

22The issue with Sentinel-1 has been known and under investigation since its launch

An example of a residual effect that has been under analysis over the rainforest is the variation of Doppler as a function of range (or incidence angle)

 2016, Last Accessed December 2017.

Doppler Centroid across Swath

S-1B EW Acquisition over Svalbard, 20170904

Doppler Centroid Frequency across Swath for Slice: S1B_EW_SLC_1SDH_20170904T054102_20170904T054205_007238_00CC25_9D42.SAFE

Doppler Centroid Frequency across Swath for Slice: S1B_EW_SLC_1SDH_20170904T054203_20170904T054300_007238_00CC25_CB17.SAFE

RESATT files example: Middle East/Africa

Sentinel-1 SAR Imaging Modes

- SAR Instrument provides 4 exclusive SAR modes with different resolution and coverage

- SAR duty cycle per orbit: up to 25 min in any imaging mode + up to 74 min in Wave mode
- Interferometric Wide Swath (IW) mode for land \& coastal area
- Extra Wide Swath (EW) mode for sea-ice monitoring and maritime surveillance
- StripMap (SM) for volcanic islands and emergency situations
- Wave (WV) mode is continuously operated over open ocean

Mode	Incidence Angle	Single Look Resolution	Swath Width	Polarisation
Interferometric Wide Swath (IW 1-3)	30-42 deg.	Range 5 m Azimuth 20 m	250 km	$\mathrm{HH}+\mathrm{HV}$ or $\mathrm{V}+\mathrm{VH}$
Wave mode W, 1 W, 2	23 deg. 36.5 deg.	Range 5 m Azimuth 5 m	$20 \times 20 \mathrm{~km}$ Vignettes at 100 km intervals	HH or N
Strip Map S1-S6	20-43 deg.	Range 5 m Azimuth 5 m	80 km	$\mathrm{HH}+\mathrm{HV}$ or $\mathrm{V}+\mathrm{V} \mathrm{H}$
Extra Wide Swath (EN 1-5)	20-44 deg.	Range 20 m Azimuth 40 m	400 km	$\mathrm{HH}+\mathrm{HV}$ or $\mathrm{V}+\mathrm{VH}$
				bllae

