

SAR Pointing Calibration for Ocean Surface Radial Velocity Estimation: Challenges and Alternatives

Dirk Geudtner¹, Francisco Ceba Vega¹, Sergio Bras¹, Mike Kubanski², Bernhard Rabus², and Andrea Recchia³

¹ESA-ESTEC ²Simon Fraser University, Vancouver, Canada ³Aresys, Italy

ESA UNCLASSIFIED - For Official Use

European Space Agency

÷

Background & Motivation Radial Velocity Estimation: Doppler Centroid Anomaly

 Demonstration of feasibility using Doppler Centroid Anomaly (DCA) to estimate ocean surface radial velocity

$$\omega_D = 2\pi f_D = \frac{d\varphi}{dt} = \frac{4\pi}{\lambda} \frac{dR}{dt} = \frac{4\pi}{\lambda} v_{rad}$$
$$f_D = \frac{2 v_{rad}}{\lambda}$$

$$f_{DCA} = f_{DC_{SAR}} - f_{DC_{point}}$$
measured

$$f_{DC_{point}} = f_{DC_{ATT}} + f_{DC_{mech}} + f_{DC_{elec}}$$

pointing knowledge

- Estimation of $f_{DC_{ATT}}$ using AOCS quaternions
- Calibration over land (homogeneous areas) for estimation of $f_{DC_{point}}$

ESA UNCLASSIFIED - For Official Use

M. J. Rouault, A. Mouche, F. Collard, J. A. Johannessen, and B. Chapron, "Mapping the Agulhas Current from space: An assessment of ASAR surface current velocities," *J. Geophys. Res. Ocean.*, vol. 115, no. 10, pp. 1–14, 2010.

Sentinel-1

Slide 2

_ II 🛌 :: 🖛 + II 🗮 🚝 _ II II _ _ _ Z :: :: 🖬 🖬 🖬 🗮 🚟 🕪

Sentinel-1 Radial Velocity Estimation

Sentinel-1 Radial Velocity (RVL) product relates Doppler Centroid Anomaly (DCA), i.e. geophysical Doppler, to ocean surface radial velocity using IW and WV mode data

DCA estimation:

- *f_{DCSAR}* (blue): estimated in SAR image
- $f_{DC_{ATT}}$ (black): based upon knowledge of on-board platform attitude (quaternions)
- $f_{DC_{RESATT}}$ (red): Restituted attitude, estimated onground to improve platform attitude knowledge
- *f*_{DCelec}: based upon Antenna Model

$\Rightarrow \text{Major focus on estimation of } f_{DC_{ATT}} \text{ and } f_{DC_{RESATT}}$ e.g. using area with stable and homogeneous backscatter (Amazon)

Slide 3

= 88 🛌 == + 88 💻 들 == 88 88 == 2 == 88 🔤 88 == 10 💥 🚘 101

Sentinel-1 Attitude Knowledge vs Doppler

 Doppler Centroid bias variation (jumps) due to mis-alignment between Star Trackers (3 different combinations)

Particles

Improvements:

- STT re-alignment campaign and relativistic *light* aberration correction
- Optimization of AOCS gain (Kalman filter) settings
- Improvements in estimation of Restituted Attitude
- Gyro-based (no STT) Restituted Attitude

ESA UNCLASSIFIED - For Official Use

= 11 ba = = + 11 = = = = 11 11 = = = = H bi = 11 = 12 H 🕷 🛏 II

Sentinel-1 L2 RVL Product

- Studies on ocean signature analysis, e.g. estimation of gradient wall location of the Gulf stream current
- Synergistic acquisitions of RADARSAT-2 and Sentinel-1 data (S-1 RVL product)
 ⇒ using *relative* radial velocity (only)
- current RVL product shows non-geophysical artifacts, not related to attitude knowledge
 - residual ramps in azimuth
 - varying Doppler biases from swath to swath (discontinuities),
 - different Doppler trends across range

ESA UNCLASSIFIED - For Official Use

· _ II 🛏 :: = + II = 🚝 _ II II = = :: II 🖬 🖬 II = : : II 🕷 🛏 🕨

TOPS De-ramping Function

- Large Doppler variation (5 kHz) due to TOPS azimuth beam steering
- De-ramping operation results in the demodulated signal

$$s_d(t) \approx \beta \cdot exp(j\pi k_{eff}(t-t_0)^2) \cdot (j\pi k_s(t_0^2 - t_{mid}^2)) \cdot exp(-j2\pi k_s(t_0 - t_{mid}) \cdot t)$$

 β contains the azimuth weighting and range phase terms $k_{eff} = k_a - k_s$: effective chirp rate; k_a Fm rate, k_s : Doppler rate due to azimuth antenna steering center exponential term: residual phase term (no impact)

\Rightarrow last term is responsible for the demodulation: t_{mid} : burst center time

from Theory:

- Error in t_{mid} causes asymmetries of antenna patterns \Rightarrow bias in Doppler \Rightarrow discontinuities between sub-swaths
- Error in steering rate ⇒ Pointing error w.r.t. steering angle causes (residual) Doppler variations along azimuth (ramps)

ESA UNCLASSIFIED - For Official Use

EW Mode: Doppler Centroid across Swath

S-1B EW Acquisition over Africa, 2016 06 11

ESA UNCLASSIFIED - For Official Use

Slide 8

EW Antenna Model Output: Gain and Phase

-208

-216

-232

-240

-248

-256

-264

36

34 [6 32]0

30 asel

26 24

+ 22 0.003 0.002 0.001

0.000

-0.001

-0.002

36.0

34.5 38

33.0

31.5

30.0

28.5

27.0

25.5

1-200

-210 -224

-2205 -2308

-240% -250£

-260

-270

2-280

0.003

0.001

0.000

-0.002

S1A_AM_EW4_2013EM_HH_Phase

0.08.08.18.18.18.18.18.18.18.18.19.1003

S1A AM EW2 2013EM HH Phase

-0.08_0.06_0.04 V -0.02_0.00_0.020.003

128

104

S1A_AM_EW5_2013EM_HH_Gain

150

145

140 8

130

\$ 125

0.003

0.002

0.000 -0.001

-0.002

† 140 120

130

110 ge 100 se 90 H

80

4 70

2 60

0.003

0.001

0.000 -0.001

120 5

140.0

137.5

135.0

132.5

130.0

127.5

† 145

140

135 9

130 8

125

120

0.003

0.002

0.001

S1A AM EW1 2013EM HH Gain

S1A_AM_EW2_2013EM_HH_Gain

-0.08 -0.06 -0.04 -0.02 0.00 0.020.003

144

142

140

138

136

134

132

130

128

14)

135

126

† 145

140

135.5

130

0.003

0.002

0.001

-0.000

S1A_AM_EW4_2013EM_HH_Gain

0.08.09.18.18.18.18.18.18.19.003

(B

† 150 144

145

140 🛱

135.5 138

130

125

120 0.003

0.000

-0.001

0.14_{0.15}0.16_{0.17}0.18_{0.19}0.200.003

IW Mode: Doppler Centroid across Swath (ascending orbit)

S-1B IW Acquisition over North America, 2016 09 09

ESA UNCLASSIFIED - For Official Use

Slide 10

IW Mode: Doppler Centroid across Swath: (descending orbit)

S-1B IW Acquisition over North America, 2016 09 09

ESA UNCLASSIFIED - For Official Use

Slide 11

IW Antenna Model Output

1-100

-110

-1205 -1305

-1408

-150Ê

-160

-170

±-180

0.003

0.001

/ 0.000 -0.001

-0.002

S1A_AM_IW2_2013EM_HH_Phase

0.02_{0.04}0.06_{0.08}0.10_{0.12}0.140.003

-112

-120

-128

-136

-144

-152

-160

-168

-176

S1A_AM_IW2_2013EM_HH_Gain

14

14

14

13

13

13

12

150

145

1409

.드 135 ଓ

130

125 0.003

0.001

0.000

-0.001 U

-0.002

Slide 12

1+1 + **활동**

Sentinel-1B SM: Doppler Centroid Results

s1b-s6-ard-vv

s1b-s6-ard-vv 2

s1b-s6-ard-vv

vv-hrs6-ard-vv

- DC bias and slope as expected from theory (pitch and yaw attitude)
- \Rightarrow Indicates that for IW and EW, the issues are related to TOPS and tapering of antenna pattern

S1B_S4_GRDH_1SDV_20170920T224504_20170920T224533_007481_00D352_3A12 S1B_S5_GRDH_1SDV_20170929T100405_20170929T100433_007605_00D6DC_5648 ESA UNCLASSIFIED - Fo**S0B**_GRDH_1SDV_20170922T101248_20170922T101309_007503_00D3F6_3EF1

= II 🛏 == + II == 🚝 == II II == == == H 🖬 II == == H 🗰 🗰 👫 🛏 IV

ENVISAT ASAR ScanSAR Doppler across Swath

ESA UNCLASSIFIED - For Official Use

Figure courtesy of CLS

Slide 14

Effect of Antenna Patterns on Doppler Centroid

- Doppler prediction on a point by point basis
- Doppler bandwidth is simulated for each output grid point
- Predicted Doppler Centroid is the weighted average of Doppler bandwidth, where weighting is given by antenna patterns

 Simulation of DC assuming perfect zero-Doppler geometry (no squint)

Vsensor

Idov

Antenna gain

- DC is predicted using ideal symmetric theoretical patterns and antenna patterns (simulated from AM)
- Tapering of antenna patterns causes variations across range, and biases varying between sub-swaths ⇒ analysis on-going

ESA UNCLASSIFIED - For Official Use

Sentinel1-NG High-Level Mission Requirements

- 1. Continuity of C-band data beyond next decade (2030)
- Ensure continuity of Copernicus services
 - \Rightarrow improve **existing** and support **evolving** operational applications (
- Sentinel-1NG data quality shall be equal or better than S-1/A-D
- CMEMS Copernicus Maritime Environment Monitoring CEMS Copernicus Emergency Management Service CLMS Copernicus Land Management Service C3S Copernicus Climate Change Service
- 2. Better spatial resolution + shorter revisit time + improved radar sensitivity + full polarisation than currently achievable with Sentinel-1:
- Sea ice mapping (classification, drift monitoring, iceberg detection) ⇒ twice daily coverage above 60 deg. North
- Maritime surveillance (vessel detection) and Oil spill detection
 ⇒ once daily coverage north of + 45 deg. (optionally +30 deg.) and south of -45 deg.
- Ice discharge monitoring in Arctic/Greenland + Antarctic ice shelves and glaciers
- Land deformation + Coherent Change Detection monitoring + precise Geolocation
 ⇒ min. 4-day repeat-pass interval for SAR Interferometry + systematic global coverage
 ⇒ ground resolution of 25m² (150m²) at instantaneous coverage of 400 km (min. 600km)

1/2

Sentinel1-NG High-Level Mission Requirements

- 3. Novel and innovative measurement capabilities to support:
- Detection of (small) vessels under challenging sea state conditions, and accurate estimation of their velocity
 - \Rightarrow Vessel size of *min.15m length* with 90% *probability* of detection and *false-alarm* of less than 2.5(10)⁻⁹
 - \Rightarrow Vessel velocity (total) estimation accuracy of less than 2 knots (1m/s)

using GMTI/ATI capability

 Ocean Surface Current Velocity estimation ⇒ Ocean surface current velocity at accuracy of 0.1 m/s for 500m² ground resolution cell size

using Along-Track Interferometry (ATI) vs. Doppler measurements

Image courtesy: Ch. Gierull, DRDC

ESA UNCLASSIFIED - For Official Use

_ II 🖕 II 🖛 + II 🗮 🚝 _ II II = 二 II II = II = II = II 💥 🛏 🕨

SAR Instrument Concepts and Launcher Compatibility

- esa
- Sentinel-1 NG multi-channel SAR system vs single-channel on Sentinel-1

Phased Array Antenna

Antenna Length: 12.8m, Height: 1.2m

Vega E

- Electronics design based on S-1 heritage
- Antenna technology available in Europe
- ATI for velocity estimation (vessels, ocean currents)
- High transmit power (900W) and mass (2100 – 2600) kg

A6-2

Reflector Antenna + Hybrid Concept

Antenna: Diameter: 9m, Focal length: 9m

- Large and light antenna
- Low transmit power (300W) and mass (1500 – 2000 kg)
- Complex SAR instrument electronics
- Reflector antenna not available in Europe
- ATI capability only for Hybrid concept

ESA UNCLASSIFIED - For Official Use

Along-Track Interferometry (ATI) Concept

v_{rad}

Phase offset due to pointing error resulting from additional slant range difference

 Canada's RADARSAT-2: C-band SAR system capable of collecting ATI ScanSAR data on a single space-borne platform

ESA UNCLASSIFIED - For Official Use

Conclusions

 DCA approach for estimation of ocean surface radial velocity requires very precise pointing knowledge of both spacecraft (attitude) and SAR beam pointing

 \Rightarrow difficult to achieve with state-of-the-art AOCS systems (STTs)

- Estimation of DC in TOPS data requires perfect de-ramping taking into account the effective azimuth antenna steering rate (pointing) and knowledge of burst center time to avoid ramps
- Ramps in S-1 RVL products may be related to residual DC variation due to TOPS
- Tapering of antenna patterns, when projected onto the ground, seems to cause variations in DC offsets (discontinuities) and different slopes
- Simulations show that for symmetric antenna patterns there are no DC artifacts
- ⇒ Single platform ATI may provide alternative and/or complementary solution to DCA approach for estimation of *ocean surface radial velocity*

ESA UNCLASSIFIED - For Official Use

Backup Slides

ESA UNCLASSIFIED - For Official Use

= II 🛌 II = + II = 🚝 = II II = = = II = M = M II = II II 🗰 🚟 🖬 🕪

²²The issue with Sentinel-1 has been known and under investigation since its launch

An example of a residual effect that has been under analysis over the rainforest is the variation of Doppler as a function of range (or incidence angle)

P. Meadows, "S1-A and S1-B Annual Performance Report for 2016," https://sentinels.copernicus.eu/documents/247904/2370914/Sentinel-1-Annual-Performance-Report-2016, Last Accessed December 2017.

ESA UNCLASSIFIED - For Official Use

Slide 22

· = •• ▶ •• •• •• •• •• ■ ≔ ≔ = •• •• •• = ≈ ≈ ∞ •• = •• ∞ ₩ ∞ ₩ ∞ ·••

Doppler Centroid across Swath

S-1B EW Acquisition over Svalbard, 2017 09 04

ESA UNCLASSIFIED - For Official Use

Slide 23

+

RESATT files example: Middle East/Africa

Slide 24

(ecsa

Sentinel-1 SAR Imaging Modes

• SAR Instrument provides 4 exclusive SAR modes with different resolution and coverage

• SAR duty cycle per orbit: up to 25 min in any imaging mode + up to 74 min in Wave mode

ESA UNCLASSIFIED - For Official Use

- Interferometric Wide Swath (IW) mode for land & coastal area
- *Extra Wide Swath* (EW) mode for sea-ice monitoring and maritime surveillance
- *StripMap* (SM) for volcanic islands and emergency situations
- Wave (WV) mode is continuously operated over open ocean

Mode	Incidence Angle	Single Look Resolution	Swath Width	Polarisation
Interferometric Wide Swath (IW 1-3)	30-42 deg.	Range 5 m Azimuth 20 m	250 km	HH+HV or VV+VH
Wave mode				
WV1	23 deg.	Range 5 m	20 x 20 km	HH or VV
WV2	36.5 deg.	Azimuth 5 m	Vignettes at 100 km intervals	
Strip Map S1-S6	20-43 deg.	Range 5 m Azimuth 5 m	80 km	HH+HV or VV+VH
Extra Wide Swath (EW 1-5)	20-44 deg.	Range 20 m Azimuth 40 m	400 km	HH+HV or VV+VH
	1			Slide 25