

Status of ALOS-2 PALSAR-2 calibration and validation and its follow-on L-band SAR

O<u>Takeshi Motohka¹</u>, Osamu Isoguchi², Masanori Sakashita², Masanobu Shimada^{1,3}, and Shinichi Suzuki¹

Japan Aerospace Exploration Agency (JAXA)
 2. RESTEC
 3. Tokyo Denki University

CEOS SAR CalVal Workshop, JPL Pasadena Nov. 7, 2017

Advanced Land Observing Satellite-2 (ALOS-2)

Mission sensor	 PALSAR-2 (L-band SAR) SPAISE2 (AIS)
Launch	May 24, 2014 H-IIA launch vehicle
Lifetime	5 years (target: 7 years)
Orbit	Sun-synchronous, 628 km altitude, 14 days revisit, Orbit control: ≦ +/- 500 m
Local sun time	12:00±15 min (descending) 24:00±15 min (ascending)
Mission data transmission	X-band: 800 Mbps (16 QAM), 200/400 Mbps (QPSK)

ALOS-2 operation phase

PALSAR-2 cal/val status

- On-board internal calibration has been performed every 3 months.
- Product quality of major observation modes has been evaluated regularly using SAR data over calibration sites.
- Standard product processing software was updated in March 2017.

Validation results of standard products (as of Jul. 2017)

Items	Results				
Geometry (RMSE)	[Stripmap and Spotlight]5.34 m (L1.1) / 6.73 m (L2.1)[ScanSAR]60.77 m (L1.1) / 29.93 m (L2.1)				
Radiometry	RCS accuracy (1σ)	0.56 dB (corner reflectors) 0.77 dB (Amazonian forests)			
Polarimetry	VV-HH amplitude ratio	1.004 (σ=0.012)			
	VV-HH phase difference	-1.19 deg (σ=4.42)			
	Cross talk	[HV/HH] -39.4 dB (σ=9.1) [VH/VV] -39.1 dB (σ=11.0)			

Cal/Val sites in Japan

• Tomakomai, Hokkaido

... 4 permanent CRs

Kanto region (around Tokyo)

... temporal (30 times/year)

CR, ARC/GC, receiver

Signal receiver

Standard product updates (1) Polarimetric calibration

Corrected a bias of about 20 degrees in the phase difference between VV and HH for beam FP6-4 and FP6-6

Beam	FP6-3	FP6-4	FP6-5	FP6-6	FP6-7
Points	5	5	5	5	10
Amplitude ratio (VV/HH)	$1.01(\sigma = 0.01)$	$1.01(\sigma = 0.01)$	$0.99(\sigma = 0.01)$	$0.99(\sigma = 0.06)$	$1.01(\sigma = 0.01)$
Phase difference (VV-HH) [deg.]	$0.7(\sigma=0.9)$	$23.4(\sigma = 0.9)$	1.8(σ = 0.6)	22.0 (σ = 5.4)	1.8(σ = 1.6)
Cross-talk (VH/HH) [dB]	$-46.9(\sigma = 4.7)$	$-45.8(\sigma = 8.2)$	$-44.4(\sigma = 3.2)$	$-41.3(\sigma = 13.0)$	$-43.2(\sigma = 6.5)$
Cross-talk (HV/VV) [dB]	$-47.6(\sigma = 4.6)$	$-39.8(\sigma = 5.4)$	$-42.9(\sigma = 5.1)$	$-38.8(\sigma = 12.7)$	$-41.0(\sigma = 4.7)$

Before update of the polarimetric calibration

After update of the polarimetric calibration

Beam	FP6-3	FP6-4	FP6-5	FP6-6	FP6-7
Scene observation date	2014/12/26	2015/01/09	2015/01/23	2015/02/06	2014/08/13
Amplitude ratio (VV/HH)	0.99	1.00	1.00	0.99	1.00
Phase difference (VV-HH) [deg.]	-0.02	-0.96	-0.21	-0.32	2.17
Cross-talk (VH/HH) [dB]	-52.4	-37.6	-47.4	-42.3	-44.3
Cross-talk (HV/VV) [dB]	-44.3	-41.2	-56.6	-41.9	-40.8

<u>Standard product updates (2)</u> <u>Radiometric calibration factor (CF)</u>

Elevation antenna pattern correction and CF was updated in March 28, 2017.

Evaluation results of the calibration factor (CF) of previous version and correction values for update version

Modo		Evaluation re	Correction value		
WICCE	Points	Mean [dB]	SD [dB]	[dB]	
Spotlight	9	-81.058	0.729	+1.942	
U2-6	29	-81.615	0.446	+1.385	
U2-7	18	-81.237	0.812	+1.763	
U2-8	14	-81.590	0.389	+1.411	
U2-9	15	-81.668	0.329	+1.332	
FP6-3	6	-81.040	0.369	+1.960	
FP6-4	8	-81.733	0.572	+1.267	
FP6-5	4	-82.770	0.495	+0.231	
FP6-6	5	-82.477	0.851	+0.523	
FP6-7	7	-80.812	0.404	+2.188	
F2-5	23	-82.374	0.337	+0.626	
F2-6	12	-82.351	0.424	+0.649	
F2-7	7	-81.911	0.226	+1.089	

Evaluation results of radiometric calibration factor (CF)

- Corner reflector (CR) data
- Observation date: Jul. 2014~Feb. 2017

Backscattering coefficient (gamma zero) over Amazonian forests

Stripmap 10 m mode

HH-pol.

HV-pol.

ScanSAR radiometric evaluation over Amazon

Comparison with PALSAR ScanSAR data

Stripmap 10 m beam F2

Ionospheric effects on geometric error

Slant range error (m) from CR data

12

Correction by TEC information

Ionospheric effects on ALOS-2

Faraday roration angle (deg)

ScanSAR HH/HV over ocean and TEC

Time-series in average TEC (global)

ALOS-4 (Advanced Land Observing Satellite-4)

Mission objectives of ALOS-4

Continuation and enhancement of the ALOS-2 missions and new applications

1. Land deformation and subsidence monitoring

• Detecting anomalies at an earlier stage by increasing observation frequency

2. Disaster monitoring

- Keeping observation capability at night and at bad-weather conditions
- Wide-area coverage for large earthquakes and multiple events

3. Other continuous missions and new applications

- Environmental monitoring: time-series change of forests, wetlands, ice sheets, etc.
- Ocean: ship detection, sea ice drift monitoring, etc.
- Agriculture and natural resources
- Inspection of increasing aging infrastructures (dams, airports, etc.) using time-series interferometry

User needs to system requirements

Main user needs

Land deformation and subsidence

- High observation frequency and spatial resolution
- Basemap observation over Japan

Disaster monitoring

- Observation at night time and bad weather condition
- Quick initial response

Continuation from ALOS-2 and new applications

- Infrastructure (dams, etc.)
- Forest and wetland
- Ship detection
- Agriculture
- Sea ice and ice sheet
- Natural resources

System requirements

High spatial resolution (1~10 m)

High observation frequency (> 20 times/year)

Wide area coverage (> 200 km swath)

Repeat-pass orbit and the same orbit as ALOS-2

Wide observable range and high-speed data transmission

Polarimetric observation

Long time continuous operation

ALOS-4 System characteristics

Characteristics of PALSAR-3

- Expanding swath width without decreasing the resolution and image quality of PALSAR-2 by using the digital beam forming (DBF).
- To guarantee the continuity of ALOS-2 applications, PALSAR-3 would inherit the major function and performance (NESZ, S/A, etc.) of PALSAR-2

System improvement from ALOS/ALOS-2

	<u>ALOS</u> 2006-2011	<u>ALOS-2</u> 2014-	<u>ALOS-4</u> 2020-	
Antenna size	3 m × 9 m	3 m × 10 m	<u>3.6 m</u> ×10 m	
Number of T/R module	80 (Si)	180 (GaN)	<u>232 (GaN)</u>	
Transmit power	2,000 W	6,120 W	<u>7,888 W</u>	
Receive beam	Single beam	Dual beam (azimuth)	<u>DBF (range)</u> + Dual beam (azimuth)	
lonospheric correction	N/A	N/A	<u>Split-band mode</u> (28 + 10 MHz)	
Pointing	Right	Right and Left	Right and Left	
Orbit control	< +/- 2.5 km (at equator)	< +/- 500 m (all latitude)	< +/- 500 m (all latitude) Laser reflector for absolute calibration	
Data recorder	90 GB	128 GB	<u>1 TB</u>	
Data transmission	120 / 240 Mbps	800 Mbps	<u>3.6 / 1.8 Gbps</u>	

<u>Summary</u>

- PALSAR-2 calibration and validation are conducted regularly. ALOS-2 keeps good performance over 3 years and a lot of L-band SAR data have been accumulated.
- JAXA has started the development of ALOS-4 as a follow-on L-band SAR satellite of ALOS-2. The ALOS-4 project is now in phase B (Preliminary design phase).

JAXA Joint PI Meeting (including ALOS-2 PI meeting)

Date: Jan. 22 (Mon) - 25 (Thu), 2018 Place: Tokyo, Japan

Abstract deadline: Nov. 17 (Fri), 2017

```
http://suzaku.eorc.jaxa.jp/meeting/jointpi2017/index_en.html
or
Please check EORC ALOS-2 website
```

PALSAR-2 observation modes

		Spotlight	Ultra Fine	High sensitive	Fine	ScanSAR nominal		ScanSAR wide
Bandy	width	84MHz	84MHz	42MHz	28MHz	14MHz	28MHz	14MHz
Resol	ution	Rg×Az: 3×1m	3m	6m	10m	100m (multilook)		60m (multilook)
Swa	ath	Rg×Az: 25×25km	50km	50km	70km	350km (5-scan)		490km (7-scan)
Polariz	zation	SP	SP/DP	SP/DP/QP/CP		SP/DP		D
NE	SZ	-24dB	-24dB	-28dB	-26dB	-26dB	-23dB	-23dB
S/A	Rg	25dB	25dB	23dB	25dB	250	dB	20dB
	Az	20dB	25dB	20dB	23dB	200	dB	20dB

SP : HH or VV or HV , DP : HH+HV or VV+VH ,

QP:HH+HV+VH+VV, CP:Compact pol (Experimental)

Main applications:

- Fine beam (DP): Forest and land cover monitoring, InSAR
- ScanSAR (DP): Rapid deforestation, wetlands, InSAR
- Spotlight (SP): Emergency observations
- Ultra Fine (SP) : Global map, InSAR base-map
- High sensitive (QP): Global map
- ScanSAR wide (SP) : Polar ice, ocean

ALOS-2 calibration & validation team sites

Backscattering coefficient (gamma zero) at Amazonian forests

Stripmap 3 m mode

