Temporally coherent radio frequency interference in ALOS-2 PALSAR-2 image

Ryo Natsuaki and Akira Hirose The University of Tokyo

Sample area (Path 16, Frame 2910)

Path 16 Frame 2910 HH-Pol. Obs. date Nov. 9, 2015 Nov. 23, 2015

Optical image (Flipped to slant range of SAR)

Interferogram Nov. 9 – Nov. 23, 2015

🕿 Range freq. domain (radio frequency domain)

Detection result (spectrum based)

Multiple frequency modulated signals

Azimuth freq. domain (Doppler domain)

Candidates of artifacts

Reason	High temp. coherency	Radio freq. modulation	Dopp. freq. variance	Notes
Azimuth ambiguity	~	-	?	No candidate scatter Too strong?
Range ambiguity	~	-	?	No candidate scatter
Moving target	-	-	~	Appears in all interferometric pairs
Ionospheric effect	-	-	?	Appears in all interferometric pairs
Tropospheric effect	-	-	?	Appears in all interferometric pairs
Hardware error	-	v	~	Fixed location
Software error	-	•	~	Appear with multiple software
Wideband RFI Incl. transponder, IF of something	•	•	~	Unknown source

Autocorrelation based RFI detection

- Focused SAR signal aligns to Range and Azimuth direction.
 Irregular signal does not.
- Make an autocorrelation map in Rg. Time / Az. Freq. and Rg.
 Freq. / Az. Time domain

$$C_{(x,y)}(k,l) = \frac{\sum_{m=x-M/2}^{x+M/2^{-1}} \sum_{n=y-M/2}^{y+M/2^{-1}} X(m,n) * \overline{X(m+k,n+l)}}{\sum_{m=x-M/2}^{x+M/2^{-1}} \sum_{n=y-M/2}^{y+M/2^{-1}} X(m,n) * \overline{X(m,n)}}$$

• If SAR signal, C(0,0)=1 and other part becomes low correlation.

Rg. and Az. direction have high correlation.

 Irregular signal has high correlation in different direction

Expected correlation map

Ryo Natsuaki, et al., IEEE JSTARS accepted₁₄

Range freq. domain (radio frequency domain)

Detection result (autocorrelation based)

Azimuth freq. domain (Doppler domain)

Detection result (autocorrelation based)

RFI contaminated (Nov. 23, 2015)

RFI removed (Nov. 23, 2015)

RFI contaminated interferogram

RFI removed interferogram

RFI contaminated (closed up, Nov. 23, 2015)

Autocorrelation based method (closed up)

RFI contaminated interferogram (closed up)

Autocorrelation based method (closed up)

Full Pol. observation case

Path 124 Frame 700 Full-Pol. Obs. date Aug. 11, 2015 Aug. 8, 2017

Google Earth image (Jan. 17, 2017)

HH interferogram Aug. 8, 2017 – Aug. 11, 2016

Pauli decomposition before removal

Aug. 8, 2017

Aug. 11, 2015

Pauli decomposition after removal

Aug. 8, 2017

Aug. 11, 2015

HH Aug. 8, 2017 after RFI removal

- Found irregular signals (probably RFI)
- High temporal coherency, overwrite ground targets
 -> Disturb interferometric analysis
- Multiple polarizations
 -> Disturb polarimetric analysis
- Do not appear at same place if track is different.
- Proposed autocorrelation based RFI detection method
- Further improvements are required

 > Distinguish strong backscattered signal from RFI
 -> Finding RFI source
- How to evaluate numerically?
 -> Strong, high temporal coherency

Radio Frequency Interference (RFI)

Cross talk between multiple systems

http://www.tele.soumu.go.jp/resource/search/myuse/usecondition/wagakuni.pdf

RFI detection in SAR system

- Time Stationary Narrow Band (E.g., GNSS)
- Time Varying Wide Band (E.g., Communication, Radar)
- Integration in time / frequency domain for RFI detection
- "SAR system consumes the widest bandwidth"
- Detection by spectrum-based methods.

Intermittently transmitted (ITWB) RFI

- High temporal coherence
 - -> Arrives simultaneously in multiple observation dates
- Difficult to find in range freq. domain
 - -> Frequency modulated
 - -> Bandwidth is close to (or wider than) SAR
- Appear in azimuth freq. domain
 - -> Doppler frequency shifts differently from backscatter

Declined sources

- Moving target (blurred appearance)
 Must be temporally incoherent
- Ambiguity (sidelobe)
 - -> Can expect the signal source
 - -> Higher coherency than normal ambiguity

