

S-1 MPC The in-orbit performance of the

Sentinel-1A C-SAR Instrument

DATE: ISSUE: AUTHOR: 27th October 2015

ARESYS S1A MPC team

0

Outline

1. Introduction

• ESL INS within the S-1 MPC

2. S-1A Instrument long-term performance monitoring

- Internal calibration:
 - PG impact of temperature
 - SAR Antenna monitoring
- Doppler Centroid
- Burst synchronization
- FDBAQ

ESL INS within the Sentinel-1 MPC

- Expert Support Laboratory SAR Instrument
- Long term monitoring of key instrument performance parameters
- Investigation of anomalies:
 - Detailed analyses of raw data, Internal cal signals
 - Impact on data quality
- Support to the maintenance of the instrument configuration (RADAR DATA BASE)
- Support to the maintenance of the L1 processing configuration

Internal Calibration monitoring

CEOS 2015 27th October 2015

Temperature evolution

Temperature increase since March 2015, related mainly to the increased instrument operation

PG gain trend: co-pol

Advancing remote sensing

		НН	VV
	SM	-0.20 dB/year	-0.01 dB/year
	IW	-0.26 dB/year	-0.04 dB/year
	EW	-0.25 dB/year	-0.02 dB/year

CEOS 2015 27th October 2015

© Aresys SAR Area

Issue 1.0

PG gain trend: cross-pol

Advancing remote sensin

	VH	HV
SM	-0.16 dB/year	-0.01 dB/year
IW	-0.19 dB/year	-0.09 dB/year
EW	-0.18 dB/year	-0.07 dB/year

CEOS 2015 27th October 2015

Issue 1.0

© Aresys SAR Area

PG gain drift investigation

- PG drift of approx 0.2dB/year for rx-H polarization
- Investigation of the single elements' drift has been carried out

 $PG = \frac{TX \cdot RX \cdot TA}{EPDN \cdot APDN}$

Considering coefficients trends in [dB/year] the following relationship applies:

$$PG_{TREND} = TX_{TREND} + (RX_{TREND} - EPDN_{TREND}) + (TA_{TREND} - APDN_{TREND})$$

$$TX_{CHAIN}$$

$$TA_{CHAIN}$$

Tx chain from IntCal

Advancing remote sensing

Trondo	Mode	Tx H trend	Tx V trend				
calculated	SM	-0.36 dB/year	-0.22 dB/year				
from 7 th April 2014 to 31 st	IW	-0.35 dB/year	-0.25 dB/year				
May 2015	EW	-0.38 dB/year	-0.21 dB/year				
	WV	-0.38 dB/year	-0.29 dB/year				

Rx chain from IntCal

RX H and V show a common stable trend, with a jump related to instr. Rx gain change occurred in September 2014

TA chain from IntCal

TA V-pol shows a significant positive trend, compensating the TX negative trend

PG trend last 4 months

12

© Aresys SAR Area

Internal calibration - summary

- PG drift of approx 0.2dB/year for rx-H polarization up to March 2015
- No drift for the rx-V polarization
- Investigation on the «source» of the drift indicates that:
 - The TX chain shows a negative trend
 - The RX chain shows a stable trend (except for a jump related to the instrument gain reconfiguration)
 - The TA V shows a positive trend (especially for V-pol), «compensating» the negative TX trend
- The increased instrument utilization since March 2015 (also seen from the increased temeperature analysis) mitigates the drifts.
- The drift is captured by the internal calibration: no impact on data quality

Antenna TRMs status evolution:

Date	TILE	ROWs	TX/RX – H/V	Description
5-May-2014	4	11,12	TX H, TX V, RX V	Failure
9-Jun-2014	4	12	RX H	Failure
29-Apr-2015	4	11	RX H	Failure
16-18 Apr 2015 20-28 Apr 2015 01-04 May 2015	12	16	TX V, RX V	Intermittent failure
18-May-2015, 22:33:36 UT	12	16	TX V, RX V	Failure
18 Oct 2014 to 20 Jan 2015 18-20 Mar 2015 26-28 Mar 2015 18-24 Apr 2015 25-30 Apr 2015 05-06 May 2015 26-27 May 2015 06-14 July 2015 17-21 July 2015	5	1-20	RX H, RX V	Intermittent failure
22 July 2015	5	1-20	RX H, RX V	Switch to redundancy (RDB#5)

Closer look to Tile#5

• Intermittent failure of complete tile (RX only, both polarizations)

Antenna coefficients from RFC (average over rows)

Since launch – H pol

Advancing remote sensir

Issue 1.0

CEOS 2015 27th October 2015

Investigation of the impact on data quality

- Impact on antenna directivity → reduction close to 13/14 (0.7 dB)
- The effect impacts the PG, which shows a consistent power variation
- ➔ The radiometric accuracy of the data is not impacted
- The NESZ is increased by the same amount

22 July 2015 – Switch to redundancy

Antenna status - summary

- The antenna status is daily monitored through the dedicated RFC mode
- 10 failures in total since launch:
 - 2 TX H-pol
 - 3 TX V-pol
 - 2 RX H-pol
 - 3 RX V-pol
- «Intermittent» failure of tile #5 in RX only, both polarizations, in the period Oct 2014 – July 2015
- Switch to redundancy on the 22 July 2015 resolved the issue.

Doppler Centroid

Doppler centroid evolution over 1 cycle

Doppler centroid evolution over 1 cycle

DC evolution during Zero Doppler period

Quaternions at work

 acquisition with YSL disabled during S1A unavailability is "seen" by the quaternions

Yaw and pitch from SSP quaternions

Doppler Centroid - summary

- The Doppler Centroid over land is limited within 50 Hz, confirming the effectiveness of the Zero-Doppler steering law.
- The Star Trackers re-configuration events impact the overall bias of the Doppler Centroid and can be estimated from data. (No impacts on L1 data quality)

Burst Synchronization

Burst synchronization evolution

Burst synch within nominal values

Issue 1.0

FDBAQ

Recall of the FDBAQ concept

FDBAQ at work: example

Advancing remote sensing

CEOS 2015 27th October 2015

lssue 1.0

© Aresys SAR Area

Data SNR statistics

Land scenario with cities

Forest scenario

FDBAQ - summary

- The FDBAQ quantization scheme performs correctly and provides an improved SNR for high-reflectivity targets
- The long-term statistics over the acquired data show that the average Mbit/s is :
 - [271.5 213.36 222.56 188.58 208.04 178.39] For Stripmap
 - 194.89 For IW
 - 62.32 For EW
 - [11.8 6.7] For WV
- The average bit/sample is <3.5, lower than BAQ4, with improved SNR

Thank you

