

Status of ALOS-2 PALSAR-2 calibration/validation and ALOS-4 development

<u>Masato Ohki</u>, Takeshi Motohka (JAXA) Osamu Isoguchi, Haruya Hirano (RESTEC) Masanobu Shimada (Tokyo Denki Univ.)

Advanced Land Observing Satellite-2 (ALOS-2)

Mission sensor	 PALSAR-2 (L-band SAR) SPAISE2 (AIS)
Launch	May 24, 2014 H-IIA launch vehicle
Lifetime	5 years (target: 7 years)
Orbit	Sun-synchronous, 628 km altitude, 14 days revisit, Orbit control: ≦ +/- 500 m
Local sun time	12:00±15 min (descending) 24:00±15 min (ascending)
Mission data transmission	X-band: 800 Mbps (16 QAM), 200/400 Mbps (QPSK)

ALOS-2 operation phase

PALSAR-2 cal/val status

- On-board internal calibration has been performed every 3 months.
- Product quality of major observation modes has been evaluated regularly using SAR data over calibration sites.
- Standard product processing software was updated on Jun-5-2018 (radiometric calibration) and on Nov-20-2018 (correction of range offset).

Validation results of standard products (as of 2018-Aug-07)

Items	Results				
Geometry (RMSE)	[Stripmap and Spotlight] 5.34 m (L1.1) / 6.73 m (L2.1) [ScanSAR] 60.77 m (L1.1) / 29.93 m (L2.1)				
Radiometry	RCS accuracy (1σ)	0.48 dB (corner reflectors) 0.41 dB (Amazonian forests)			
Polarimetry	VV-HH amplitude ratio	1.000 (σ=0.012)			
	VV-HH phase difference	0.137 deg (σ=0.962)			
	Cross talk	[HV/HH] -41.90 dB (σ=5.264) [VH/VV] -41.56 dB (σ=4.953)			

Radiometric calibration

- Digital number of PALSAR-2 product can be converted to sigma-zero value by using the following equation.
- The Calibration Factor (CF) in the equation is evaluated by measuring CRs.

For L1.1 (SLC)

 $\sigma_{slc}^{0} = 10 \cdot \log_{10} \langle I^{2} + Q^{2} \rangle + CF_{1} - A$

For L1.5 and 2.1 (Amplitude)

$$\sigma_{Q16}^0 = 10 \cdot \log_{10} \left\langle DN^2 \right\rangle + CF_1$$

I, Q (SLC), DN (amplitude): digital number CF = -83 dBA = 32 dB

Radiometric calibration factor (CF) [Jun. 2018 update]

Product ordering time for AUIG-2			Sep. 11, 201 Sep. 28, 20	4 ~)16	Sep. 28, 2016 ~ Mar. 28, 2017	Mar. 28, 2017 ~ Jun. 5, 2018	Jun. 5, 2018 ~
Version of the processing software		000.001 ~ 002.021 002.022		002.023	002.024		
	Spotlight	all	-81.1			-83.0	-83.0
	Stripmap [3 m]	U2-6	-81.6				
		U2-7	-81.2				
		U2-8	-81.6				
		U2-9	-81.7				
	Stripmap [6 m]	FP6-3	-81.0			-84.0	
		FP6-4	-81.7			-83.0	
CF [dB]		FP6-5	-82.8				
		FP6-6	-82.5				
		FP6-7	-80.8		-84.0		
	Stripmap [10 m]	F2-5	-82.4		-83.0		
		F2-6	-82.4				
		F2-7	-81.9				
	ScanSAR [14 MHz]	W2	-79.0 -83.0				
	ScanSAR [28 MHz]	W2	-82.0 -86.0				
	The othe	The other modes		-83.0			6

Radiometric accuracy

Range offset error [Nov. 2018 corrected]

- Range offset anomaly sometimes occurred in Stripmap 10-m, ScanSAR 350km (14/28MHz), and ScanSAR 490km observation modes
- On Nov. 20, 2018, JAXA updated the software for PALSAR-2 standard products to fix the range offset error.

Other issues

- It was found that the ScanSAR HV-polarization images sometimes became dark and blurred over ocean and coastal regions.
- The cause of this issue was that the onboard ATT (attenuator) setting for ScanSAR crosspolarization was higher.
- On April 11, 2018, the ATT setting for ScanSAR cross-polarization was changed to 20 dB.

Ionosphere effect on geometric accuracy

Geometric accuracy

2015/04/19 UT3:00 $50 \text{ TECU} \rightarrow \text{g}\text{range shift -25 m}$

2018/07/08 UT3:00 10 TECU \rightarrow g_range shift -5 m

R: 2015/04/19, G&B: 2018/07/08

11

ALOS-4 (Advanced Land Observing Satellite-4)

Mission objectives of ALOS-4

Continuation and enhancement of the ALOS-2 missions and new applications

1. Land deformation and subsidence monitoring

• Detecting anomalies at an earlier stage by increasing observation frequency

2. Disaster monitoring

- Keeping observation capability at night and at bad-weather conditions
- Wide-area coverage for large earthquakes and multiple events

3. Other continuous missions and new applications

- Environmental monitoring: time-series change of forests, wetlands, ice sheets, etc.
- Ocean: ship detection, sea ice drift monitoring, etc.
- Agriculture and natural resources
- Inspection of increasing aging infrastructures (dams, airports, etc.) using time-series interferometry

User needs to system requirements

Main user needs

Land deformation and subsidence

- High observation frequency and spatial resolution
- Basemap observation over Japan

Disaster monitoring

- Observation at night time and bad
 weather condition
- Quick initial response

Continuation from ALOS-2 and new applications

- Infrastructure (dams, etc.)
- Forest and wetland
- Ship detection
- Agriculture
- Sea ice and ice sheet
- Natural resources

System requirements

High spatial resolution (1~10 m)

High observation frequency (> 20 times/year)

Wide area coverage (> 200 km swath)

Repeat-pass orbit and the same orbit as ALOS-2

Wide observable range and high-speed data transmission

Polarimetric observation

Long time continuous operation

ALOS-4 System characteristics

Characteristics of PALSAR-3

- Expanding swath width without decreasing the resolution and image quality of PALSAR-2 by using the digital beam forming (DBF).
- To guarantee the continuity of ALOS-2 applications, PALSAR-3 would inherit the major function and performance (NESZ, S/A, etc.) of PALSAR-2

System improvement from ALOS/ALOS-2

	<u>ALOS</u> 2006-2011 <u>ALOS-2</u> 2014-		<u>ALOS-4</u> 2020-	
Antenna size	3 m × 9 m	3 m × 10 m	<u>3.6 m</u> ×10 m	
Number of T/R module	80 (Si)	180 (GaN)	<u>232 (GaN)</u>	
Transmit power	2,000 W	6,120 W	<u>7,888 W</u>	
Receive beam	Single beam	Dual beam (azimuth)	DBF (range) + Dual beam (azimuth)	
lonospheric correction	N/A	N/A	<u>Split-band mode</u> (28 + 10 MHz)	
Pointing	Right	Right and Left	Right and Left	
Orbit control	< +/- 2.5 km (at equator)	< +/- 500 m (all latitude)	< +/- 500 m (all latitude) Laser reflector for absolute calibration	
Data recorder	90 GB	128 GB	<u>1 TB</u>	
Data transmission	120 / 240 Mbps	800 Mbps	<u>3.6 / 1.8 Gbps</u>	

<u>Summary</u>

- PALSAR-2 calibration and validation are conducted regularly. ALOS-2 keeps good performance over 4 years.
- After the nominal mission operation phase (5 years) completed, postmission operation will start from Mid 2019
- JAXA has started the development of ALOS-4 as a follow-on L-band SAR satellite of ALOS-2. The ALOS-4 project is now in phase C (Final design phase).

PALSAR-2 observation modes

JAXA's routine Cal/Val mainly evaluated the major observation modes and beams used in the basic observation scenario.

- ✓ Stripmap 3-m single-pol (UBS), beam U2-6~9
- ✓ Stripmap 6-m quad-pol (HBQ), beam FP6-3~7
- ✓ Stripmap 10-m dual-pol (FBD), beam F2-5~7
- ✓ ScanSAR 350-km swath dual-pol (WBD/WWD), beam W2

Mada		Spotlight		Stripmap		ScanSAR		
Mode	Ultra fine		High sensitive	Fine nominal		inal	wide	
Bandy	width	84 MHz	84 MHz	42 MHz	28 MHz	14 MHz	28 MHz	14 MHz
Resol	ution	Rg×Az: 3×1 m	3 m	6 m	10 m	100 m 6 (multilook) (mu		60 m (multilook)
Swa	ath	Rg × Az : 25 × 25 km	50 km	50 km	70 km	350 km 490 (5-scan) (7-sc		490 km (7-scan)
Polariz	zation	SP	SP/DP	SP/DP/QP/CP		SP/DP)
NE	NESZ		-24dB	-28dB	-26dB	-26dB	-23dB	-23dB
S/A	Rg	25dB	25dB	23dB	25dB	25dB		20dB
	Az	20dB	25dB	20dB	23dB	20dB		20dB

SP: HH or HV or VV, DP: HH+HV or VV+VH, QP : HH+HV+VH+VV

CP : Compact pol (experimental mode)

ALOS-2 Cal/Val sites (Japan)

- Tomakomai, Hokkaido
 - ... 4 permanent CRs 2 dihedral CRs and 2 trihedral CRs
- Kanto region (around Tokyo)
 - ... Temporally deployed CRs/ARCs/GCs 20-30 times/year

CR (Corner Reflector)

ARC (Active Radar Calibrator) / GC (Geometric Calibrator)

Signal receiver

ALOS-2 Cal/Val sites (World)

- CR sites
 - ✓ Amazon/Rio Branco (JAXA)
 - ✓ Alaska (ASF)
 - ✓ ALOS-2 Cal/Val Team member's sites
- Antenna pattern calibration
 - $\checkmark\,$ Amazon forest area ... Flat and homogeneous target

