PROTOTYPING RADIOMETRICALLY TERRAIN CORRECTED SENTINEL-1 LARGE-SCALE PROCESSING

Contributors:

F.J. Meyer¹⁾²⁾; T. Logan¹⁾; J. Nicoll¹⁾; K. Hogenson¹⁾; R. Gens¹⁾

¹⁾Alaska Satellite Facility, University of Alaska Fairbanks ²⁾Geophysical Institute, University of Alaska Fairbanks

CEOS SAR Cal/Val 2017, JPL

CEOS SAR Cal/Val 2017 - 2

- ASF is NASA Distributed Active Archive Center (DAAC) for SAR Data
 - Established in 1991 as the prime U.S. downlink and processing center for SAR data
 - Operates three antennas for command uplink and data downlink of a series of NASA and non-NASA remote sensing satellite systems
- In Dec '15, ASF has become one of the hosts of the complete Sentinel-1 SAR data archive
- Since then, ASF's archive has grown rapidly, currently housing about 3.5PB of SAR data in its archives (all on spinning disks for immediate download)

Free-and-Open SAR Data Has Been Changing the SAR Community

Franz J Meyer, UAF

CEOS SAR Cal/Val 2017 - 3

ALASKA

UNF ALASKA SATELLITE FACILITY

Making remote-sensing data accessible since 1991

Open Data Has Diversified the SAR User Community

Many Non-Traditional SAR Users are Looking for Geocoded & Terrain Corrected (GIS-Ready) Data

- Interest in GIS-ready data, that can be ...
 - Easily combined with data from other sensors
 - Seamlessly mosaicked with neighboring swaths acquired at different incidence angles
 - Lends itself for mapping & Change detection
- A Geocoded and Radiometrically Terrain Corrected SAR Product Meets These Users Needs

A WORD ON THE MOST APPROPRIATE SAR BACKSCATTER NORMALIZATION

Ellipsoid-Based Backscatter Coefficient Conventions

DTM-Based Backscatter Coefficient Conventions

• Traditional Local Incidence Angle-Based Terrain Normalization:

$$\sigma_T^0 = \beta^0 \cdot \frac{A_\beta}{A_\sigma} = \sigma_E^0 \cdot \frac{\sin\theta_{LIM}}{\sin\theta_E}$$

- Several limitations leading to limited terrain flattening performance:
 - Terrain within one resolution cell is assumed smooth \rightarrow bias in A_{σ}
 - Non-homomorphic nature of the slant-range to map-geometry projection is ignored
 - The estimate of local area is not projected into the plane perpendicular to slant range (gamma naught standard).
- Terrain-Corrected Gamma Naught (Small, 2011):

$$\gamma_T^0 = \beta^0 \cdot \frac{A_\beta}{\int_{DTM} A_\gamma}$$

- Calculates area covered by a resolution cell by integrating over DTM facets in 3D space

Comparisons of σ_T^0 and γ_T^0 have shown superior performance of the γ_T^0 convention

Example of σ_T^0 vs γ_T^0 Performance

IMPLEMENTING AND TESTING PROTOTYPE γ_T^0 WORKFLOWS FOR S-1

UNF ALASKA SATELLITE FACILITY

Making remote-sensing data accessible since 1991

RTC Processing Flows for SNAP and GAMMA

Comparing RTC Performance

• Nine Sites across the Americas

- (1) Amazon hills; (2) Mato Grosso Brazil;
 (3) Delta Junction, Alaska; (4) Fairbanks,
 Alaska; (5) Yukon-Kuskokwim river delta;
 (6&7) two locations in California; (8)
 Kansas; and (9) New Mexico
- Variety of terrain and surface types
- A total of 42 scenes were processed using both the GAMMA and SNAP workflows
- Both radiometric & geometric accuracy was analyzed against data with known quality:
 - Relative to each other
 - GAMMA-produced ALOS RTC products
 - Relative to other geocoded imagery

Selected Results

Visual Comparison Test Site: Amazon Hills

Visual Comparison:

- GAMMA RTC provides better terrain flattening
- GAMMA RTC shows better geolocation quality than SNAP RTC

Making remote-sensing data accessible since 1991

Selected Results

Visual Comparison Test Site: Fairbanks Alaska

Visual Comparison:

- GAMMA RTC provides better terrain flattening
- GAMMA RTC shows better geolocation quality than SNAP RTC
- Lower DEM resolution & Quality ightarrow reduced RTC performance

MAT ALASKA SATELLITE FACILITY

Selected Results

Comparison of Radiometric Calibration

Franz J Meyer, UAF

CEOS SAR Cal/Val 2017 - 15

- To evaluate radiometric calibration, average $\gamma^0_{T;GAMMA}$ and $\gamma^0_{T;SNAP}$ values were calculated over CEOS Amazon calibration sites
- Findings:
 - No appreciable difference in radiometric calibration between $\gamma^0_{T;GAMMA}$ and $\gamma^0_{T;SNAP}$
 - Interesting seasonal dependence of RCS in C-band

F ALASKA SATELLI

Selected Results Comparison of Resolution / Equivalent Number of Looks • Traditional methods for NoL calculation in geocoded data not useful \rightarrow Calibration patterns added to test images before RTC production and geocoding SNAP RTC ($\gamma^0_{T;SNAP}$) GAMMA RTC ($\gamma^0_{T;GAMMA}$)

• Results:

	pixel size (m)	resolution (m) [measured from artificial targets]	# Looks [estimated from artificial targets]	# Looks [measured from artificial noise patterns]
Simulated	10.0	21.0	5.0	4.8
Florida	10.0	21.0	5.0	5.3
Fused	10.0	21.0	5.0	5.5
GAMMA	30.0	30-40	10.2	15.6
SNAP	30.0	30-40	10.2	6.7
SNAP Speckle filtered	30.0	30-40	10.2	57.0

• Interpretation:

- For heterogeneous regions, the resolution of GAMMA and SNAP products are comparable
- The physical resolution of GAMMA RTC products is more spatially consistent with # looks estimated from heterogeneous regions and homogenous regions being similar
- SNAP RTC products without additional Speckle filtering appear noisy
- After Speckle filtering, the physical resolution of SNAP processed data varies widely depending on target type, suggesting that an adaptive filter was used

• Geolocation Accuracy:

- Geographic location assessment was done by comparing GAMMA and SNAP RTC data to ortho imagery source data
- GAMMA: No measurable offsets (relative to the quality of the reference data)
- **SNAP**: No measurable azimuth offsets; 10 40m range offsets

• Throughput & Other Factors:

Category	GAMMA RTC	SNAP RTC
IW Run Time (30 m)	18 minutes	30 minutes
IW Product Size (30m)	190 MB	280 MB
IW Product Size (10m)	1.72 GB	2.6 GB

- GAMMA RTC flow showed shorter processing times
- GAMMA provides detailed log files for each processing steps ightarrow valuable in QA/QC

Conclusion and Next Steps

- RTC Workflows implemented for testing operational RTC production from Sentinel-1 SAR data
- Relative Performance Evaluation of GAMMA- and SNAP-based RTC Products:
 - Both GAMMA and SNAP RTC processors provide decent terrain flattening
 - However, GAMMA RTC processor shows higher and more consistent product quality (RTC performance; resolution; geolocation)
 - GAMMA processor indicated higher throughput performance

• Next Steps:

- Test products were handed over to SAR community for external evaluation
- Both SNAP and GAMMA RTC production available through HyP3 for beta-testing

Sign up at http://hyp3.asf.alaska.edu/ and help us beta-test our products

(automatic production of RTC, d-InSAR, Change Detection Maps; RGB Composites)

Final note ...

ASF is also Providing Free-And-Open GIS Ready RTC Data for the Entire ALOS PALSAR Archive @ <u>https://vertex.daac.asf.alaska.edu/</u>

