

PLEIADES IN-FLIGHT MTF MEASUREMENTS

CEOS WGCV IVOS-27 Meeting MTF workshop November 16, 2015

Gwendoline Blanchet
Image Quality
CNES - Toulouse Space Center

1

OUTLINE

- **PLEIADES:** mission and instrument overview
- MTF measures with stars
- Results

PLEIADES: MISSION & INSTRUMENT OVERVIEW

Main features

5 spectral bands : PAN + 4 XS (B, G, R, NIR)

Spatial resolutions: 70cm (PAN), 2.8m (XS)

With 2 satellites: daily accessibility

• Lifetime : 5 years

• Launch: PHR1A December 17, 2011

: PHR1B December 01, 2012

Orbit & geometry

Near polar sun synchronous orbit

• Repeat cycle : 26 days

Inclination : 98.2 deg

Cycle : 14 orbits/day

Local time : 10.30 AM

• Altitude : 694 km

• Swath : 20 km

Agile

Instrument

• Telescope: Korsch

Push-broom imager

• Pupil : 65 cm

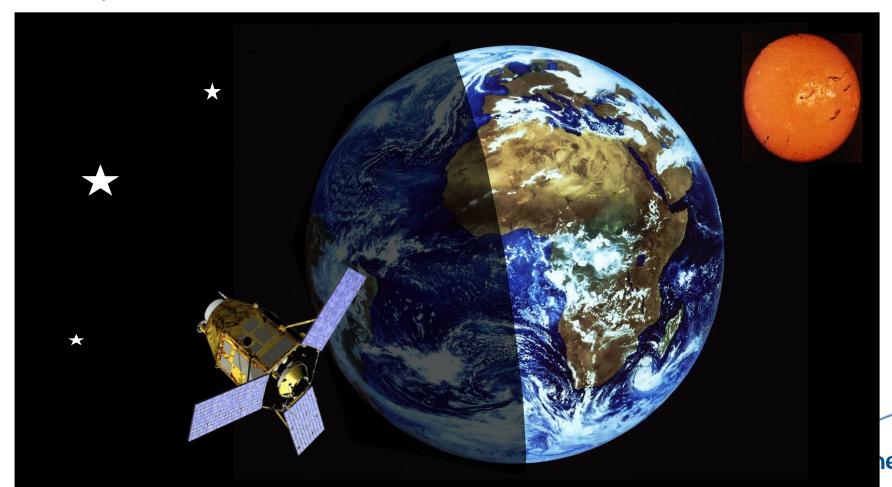
Focal length : 12.9 m

• FOV : 1.6 deg

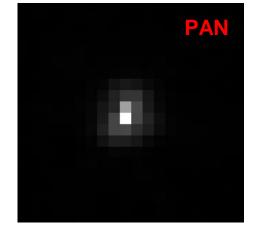
Focal plane array:

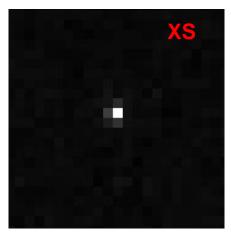
• 5 detector arrays to cover the total swath

• Detector size: 13μm(PAN), 52μm(XS)

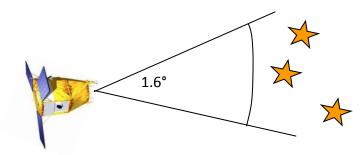

Radiometric resolution: 12 bits

In-flight capacity: refocus, detector equalization and compression ratio


Why stars?

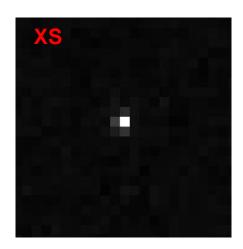

- → Operational interest: night orbits and no weather contraints
- Mathematical interest: motionless punctual objects, well localized and characterized by astronomers

Star images by Pléiades


- → Directly the instrument PSF
 (Point Spread Function) sampled on the acquisition grid
- → Spatial resolution:
 - » PAN 1µrad
 - » XS 4µrad
- → Noise + Aliasing

need several star acquisitions to oversample the PSF

→ Many stars visible in one Pléiades image





Google earth

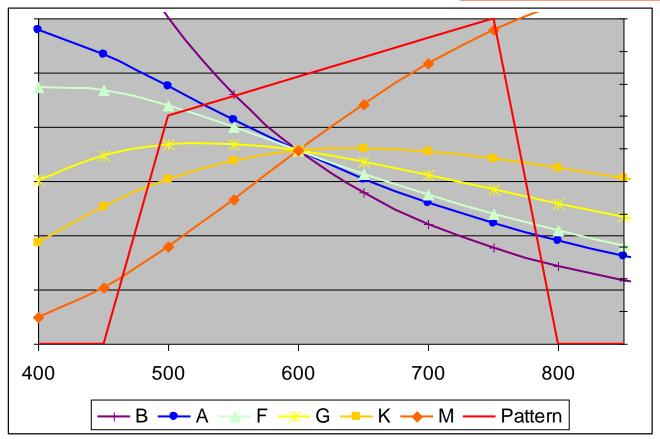
Agility allows

- → 5 acquisitions of the same star in less than a minute.
- → Oversampling of the images along one axis by slowing down the satellite

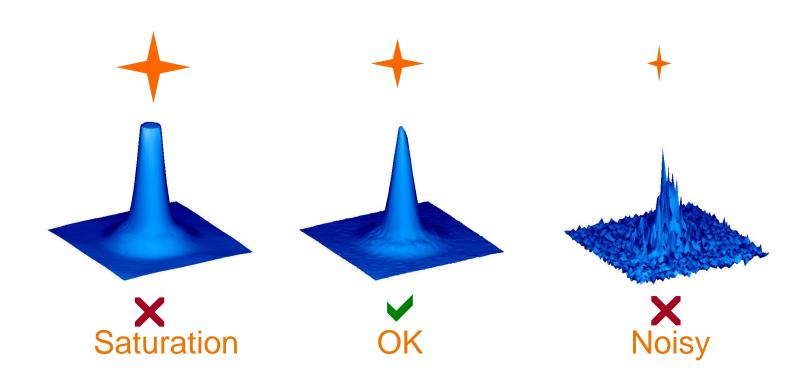
Principle:

- 1. Stars choice
 - » Accessibility
 - » Spectral characteristics
 - » Magnitude
- 2. Computation of the shift between each star and the sampling grid
- Computation of the PSF with a mean squares method by interlacing all stars sampled PSF

Assumption:


→ MTF real (not complex)

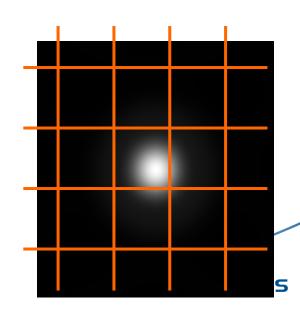
Stars choice


Stars classes, temperature and spectrum

Class	temperature	color
0	> 25 000 K	Blue
В	10 000 - 25 000 K	Blue-white
\mathbf{A}	7 500 - 10 000 K	White
\mathbf{F}	6 000 - 7 500 K	Yellow - white
G	5 000 - 6 000 K	Yellow (the Sun)
K	3 500 - 5 000 K	Yellow – Orange
M	< 3 500 K	Red

Stars choice

Computation of the shift of each star


Principle:

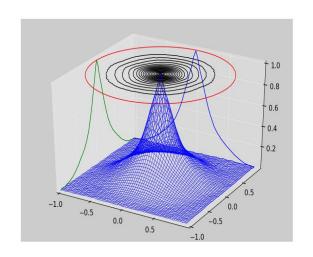
- ◆Based on the assumption that the MTF is real
- ◆Shift (dx, dy) obtained when imaginary part of the MTF is equal to 0

Find
$$(dx, dy)$$
 such that

$$\operatorname{Im}(FT(image)*\varphi_{ramp}(dx, dy)) \equiv 0$$

- ♦ With aliasing, this condition is true only at low frequencies.
 - » Phase ramp computation limited to lower frequencies

Computation of the PSF


→ Linear problem for each star

$$FT(star) = alias(MTF * \varphi_{ramp}(dx, dy))$$

→Problem solved with least squares methods

$$\begin{bmatrix}
FT(star_1) \\
FT(star_2) \\
FT(star_n)
\end{bmatrix} = [A][MTF]$$

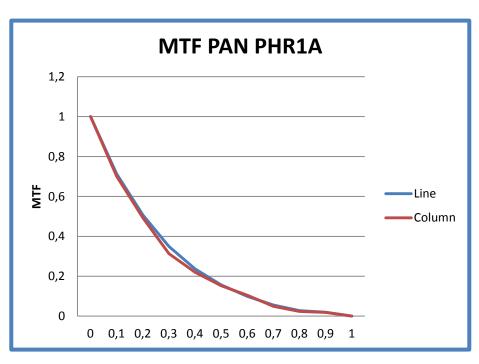
RESULTS

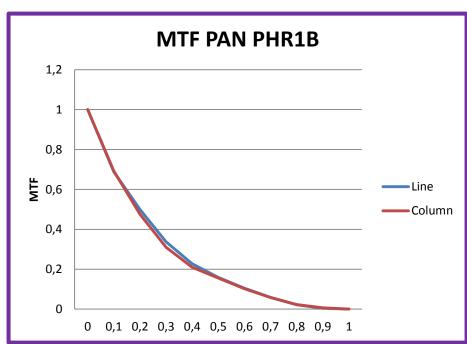
PHR1A

		4	
_	_		

MTF	line	column
PAN	0.16	0.15
В0	0.33	0.29
B1	0.31	0.27
B2	0.31	0.25
В3	0.30	0.26

MTF	line	column
PAN	0.16	0.16
В0	0.30	0.27
B1	0.31	0.27
B2	0.31	0.26
В3	0.31	0.26

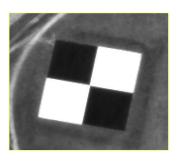

Specifications: MTF > 0.08



RESULTS

PHR1A

PHR1B



RESULTS

- Cross validated results during in-flight commissioning of PHR with methods based on ground target
 - » SPOT family

- **♦** Stable results:
 - » one measure per satellite each year
 - » 2D MTF measure (not only along axis)
 - » estimation for each detector array

Consequently, this star-based method has become operational.

CONCLUSION

- ◆Star-based method is the operational method on Pléiades.
 - » Operational interest: lower impact on the mission wrt image acquisition
 - » Methodological interest: robust and accurate 2D MTF estimation within the focal plane
 - » Method coded in the « ASTral and EaRth Image calibration toolboX » which regroups calibration methods for EO satellite CNES is in charge of

Method well adapted to next generation satellites as long as they have star acquisition capacity (agility).

