

European Space Agency

Calibration and Validation of land surface temperature for Landsat8-TIRS sensor

D. Skoković¹, J.A. Sobrino¹, J.C. Jiménez-Muñoz¹, G. Sòria¹, Y. Julien¹, C. Mattar² and Jordi Cristóbal³

¹Global Change Unit, IPL-University of Valencia (Spain) [drazen.skokovic@uv.es] ²Laboratory for Analysis of the Biosphere, University of Chile (Chile) ³Geophysical Institute, University of Alaska (USA)

INTRODUCTION TIRS LANDSAT-8 CHARACTERISTICS ALGORITHMS:

- NDVI Thresholds Method
- Radiative Transfer Equation
- GAPRI database
- Single-Channel (SC)
- Split-Window (SW)
- Test from independent simulated data STUDY AREA AND DATA RESULTS
 - Vicarious calibration
 - Intercomparison of algorithms

CONCLUSIONS

INTRODUCTION

- Landsat-8 satellite was launched in February-2013 ensuring the continuity of remote sensing data at high spatial resolution in the Landsat Data Continuity Mission, LDCM.
- Landsat-8 carries two sensors:
 - Operational Land Imager (OLI)
 - Spatial resolution of 30 m
 - 8 bands in the Visible and Near-Infrared (VNIR) and in the Short-Wave Infrared (SWIR) regions.
 - Thermal Infrared (TIR)
 - Spatial resolution of 100 m
 - 2 bands located in the atmospheric window between 10-12 µm
- \succ Thermal imaging was initially excluded from the LDCM requirements.
- The increase of applications using Landsat5 TM or Landsat7 ETM+ thermal data in recent years was a key factor to finally include a TIR sensor as a part of LDCM.
- > In particular, Land Surface Temperature (LST) is a key variable to be

RS LANDSAT8 CHARACTERISTICS

Platform	Sensor	Band	BW (µm)	λ _{eff} (μm)	GSD (m)
Landsat4	ТМ	6	10.4-12.5	11.154	120
Landsat5	ТМ	6	10.4-12.5	11.457	120
Landsat7	ETM+	6	10-12.5	11.269	60
Landsat8	TIRS	1	10.3-11.3	10.904	100
Landsat8	TIRS	2	11.5-12.5	12.003	100

1.0

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.0

E 0.1

- spatial Lower resolution than ETM+ thermal band. 0.9
- The Noise Equivalent Delta Temperature (NE Δ T) is similar to the NE Δ T of the previous TM sensors (0.4 K).
- \blacktriangleright First in the Landsat series that incorporate two TIR bands in the atmospheric window between 10-12 µm.

L4/TM B6 L5/TM B6 L7/ETM+B6 L8/TIRSB1 L8/TIRSB2 9 10 13 14 11 12 Wavelength (μ m)

For retrieving Land Surface Emissivity (LSE):

➢NDVI Thresholds Method (NDVI-THM) Sobrino et al. (2008)

For retrieving Land Surface Temperature (LST):

➢ Radiative Transfer Equation (RTE)

Single-Channel (SC) algorithm

Jiménez-Muñoz et al. (2009)

Split-Window (SW) algorithm

Mathematical structure proposed by Sobrino et al. (1996)

Applied to different Earth Observation sensors in Jiménez-Muñoz and Sobrino (2008)

➢Global Atmospheric Profiles from Reanalysis Information (GAPRI) database Mattar et al. (2014)

NDVI Thresholds Method

LSE is estimated from information collected by OLI in VNIR bands (reflectances or vegetation indices) depending on the Fractional Vegetation Cover (FVC) for a given pixel. Sobrino et al. (2008)

$$\varepsilon = a + b\rho_{red} \quad (FVC = 0)$$

$$\varepsilon = \varepsilon_s (1 - FVC) + \varepsilon_v FVC \quad (0 < FVC < 1)$$

$$\varepsilon = 0.99 \ (FVC = 1)$$

$$FVC = \frac{NDVI - NDVIs}{NDVIv - NDVIs}$$

 $oldsymbol{
ho}_{red}$: Reflectance in the red band (band 4)

 $\boldsymbol{\varepsilon}_{S} \; and \; \boldsymbol{\varepsilon}_{V}$: Soil and vegetation emissivity values

	Land Cover	Band	Expression
Linear Relationship		TIRS-1	0.979-0.046r _{OLI,B4}
between ε and ρ_{red}	FVC=0	TIRS-2	0.982-0.027r _{OLI,B4}
		TIRS-1	0.971(1-FVC)+0.987FVC
Knowing type of soil		TIRS-2	0.977(1-FVC)+0.989FVC
ε_S and ε_v were	Watar	TIRS-1	0.991
retrieved with ASTER	Waler	TIRS-2	0.986
spectral library	Crowlloo	TIRS-1	0.986
	Snowlice	TIRS-2	0.959 6

Radiative Transfer Equation (RTE)

With the thermal radiance measured at-sensor level and the atmospheric parameters obtained with radiosounding, a LST can be retrieved.

$$L_{sen} = \left[\varepsilon B_{T_S} + (1 - \varepsilon)L_d \right] \tau + L_u$$
Applying the inverse of the Planck's law
$$T_S = \frac{C_2}{\lambda \ln \left\{ \frac{C_1}{\sqrt{5} \left[\frac{L_{sen} - L_u - \tau(1 - \varepsilon)L_d}{\tau \varepsilon} \right]} + 1 \right\}}$$

$$T_S = \frac{C_2}{\lambda \ln \left\{ \frac{C_1}{\sqrt{5} \left[\frac{L_{sen} - L_u - \tau(1 - \varepsilon)L_d}{\tau \varepsilon} \right]} + 1 \right\}}$$

$$T_S = \frac{C_2}{L_{sen} - L_u - \tau(1 - \varepsilon)L_d}$$

$$T_S = \frac{C_2}{L_{sen} - L_u - \tau(1 - \varepsilon)L_d}$$

$$T_S = \frac{C_2}{\sqrt{5} \left[\frac{L_{sen} - L_u - \tau(1 - \varepsilon)L_d}{\tau \varepsilon} \right]} + 1 \right\}}$$

$$T_S = \frac{C_2}{L_u + \tau(1 - \varepsilon)L_d}$$

Single-Channel (SC) algorithm

The practical approach proposed in the SC algorithm consists of the approximation of the atmospheric functions defined by Ψ_1 , Ψ_2 , Ψ_3 versus the atmospheric water vapour content W from a second order polynomial fit.

m2

$$T_{s} = \gamma \left[\frac{1}{\varepsilon} (\psi_{1} L_{sen} + \psi_{2}) + \psi_{3} \right] + \delta$$

 $\boldsymbol{L_{sen}}$: Thermal radiance at sensor level

 T_S : Land surface temperature

 ${\it T_{sen}}$: At-sensor brightness temperature

 $m{b}_{\Upsilon}$: (1324 K for TIRS-1, and 1199 K for TIRS-2)

 Ψ_1, Ψ_2, Ψ_3 : Atmospheric functions

w: Water vapour (Radiosoundings, MOD07, in situ data...)

- Can be applied to any of the two TIRS bands. (Preferably to TIRS 1)
- Only requires the knowledge of w.
 Jiménez-Muñoz et al, (2009)

$$\gamma \approx \frac{\mathbf{L}_{\text{sen}}}{\mathbf{b}_{\gamma} \mathbf{L}_{\text{sen}}} \quad \psi_1 = \frac{\mathbf{L}}{\tau}; \quad \psi_2 = -L_d - \frac{L_d}{\tau}; \quad \psi_3 = L_d$$

$$\delta \approx T_{sen} - \frac{T_{sen}^2}{b_{\gamma}} \qquad \begin{bmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{bmatrix} \begin{bmatrix} w^2 \\ w \\ 1 \end{bmatrix}$$

	0.04019	0.02916	1.01523]
<i>C</i> =	-0.38333	-1.50294	0.20324
	L 0.00918	1.36072	-0.27514

8

Split-Window (SW) algorithm

The basis of the technique is that the radiance attenuation for atmospheric absorption is proportional to the radiance difference of simultaneous measurements at two different wavelengths. Sobrino et al. (1996)

$$T_{s} = T_{i} + c_{1} (T_{i} - T_{j}) + c_{2} (T_{i} - T_{j})^{2} + c_{0}$$
$$+ (c_{3} + c_{4}w)(1 - \varepsilon) + (c_{5} + c_{6}w)\Delta\varepsilon$$

Emissivity's extracted from ASTER spectral library

$$\varepsilon = 0.5 (\varepsilon_i + \varepsilon_j)$$
 $\Delta \varepsilon = (\varepsilon_i - \varepsilon_j)$

 $c_0 = -0.268; c_1 = 1.378; c_2 = 0.183; c_3 = 54.30; c_4 = -2.238; c_5 = -129.20; c_6 = 16.40$

 T_S : Land surface temperature

T_i, T_j : At-sensor brightness temperature at bands *i* and *j*

ALGORITHM SENSITIVITY ANALYSIS (K)

$$\delta_{alg}$$
 0.6
 $\delta_{NE\Delta T}$ 1.5 (0.4) $e(LST) = 2.1$ (1.5)
 δ_{ε} 0.6
 δ 0.1

- The Split-Window technique uses two TIR bands typically located in the atmospheric window between 10 and 12 µm
- Similar to the SC algorithm, the SW algorithm only requires the knowledge of *w*.

GAPRI database

Global Atmospheric Profiles from Reanalysis Information (GAPRI)

SC and SW coefficients retrieved from statistical fits performed over a simulated GAPRI

database ERA-Interim data set

- 0.75° x 0.75° spatial grid
- 29 mandatory levels
- MODTRAN format
- 4,838 atmospheric profiles
- Tropical, mid-latitude, sub-artic and artic weather conditions

Mattar, C., Durán-Alarcón, C., Jiménez-Muñoz, J. C., & Sobrino, J. A. (2013). Global Atmospheric Profiles derived from Reanalysis Information (GAPRI). IEEE Transactions on Geoscience and Remote Sensing (submitted).

incolo

f

in a la la lateri a luca i la ta al al ata

lest from in	laepenae		nulated	1 Gala	1			
lesting fr	om indep	pende	ent simi	llatec	۱ 	-1	•	
data:						hermod	ynamic	Initial Guess Retrieval
➢Atmosp	heric pro	files of	databas	ses	(TIGRs)		
≻108 emi	ssivity s	pectra	a (ASTE	ER	S	STanDar	d atmos	pheres in MODTRAN
Database	Algorithm	W	n data	Bias	St. D	STD)		
		range		(K)	(K,	(1)		
		(g·cm ⁻²)						
~	SW	0-6	32940	-0.1	1.2	1.2	0.997	
TIGR	SC	0-6	32940	-2.7	3.0	4.0	0.982	
01	SC	0-3	17820	-1.2	1.5	1.9	0.996	The cub index
	SC	3-6	15120	-4.5	3.2	5.6	0.954	The Sub Index
	SW	0-6	950940	0.0	0.6	0.6	0.999	refers to the
TIGR	SC.	0-6	950940	-1.1	1.7	2.0	0.996	number of
1/01	SC	0-3	886680	-0.8	0.9	1.2	0.999	atmosphoric
	SC	3-6	58860	-4.0	3.5	5.4	0.957	
	SW	0-6	249588	0.4	1.0	1.1	0.999	profiles included in
TIGI	SC	0-6	249588	-2.2	3.7	4.3	0.981	each database
	SC	0-3	186732	-1.0	1.1	1.5	0.998	
	SC	3-6	54216	-4.5	4.6	6.5	0.936	
	SW	0-6	35640	-0.2	0.9	0.9	0.998	
STP	SC	0-6	35640	-2.1	2.6	3.3	0.989	
	SC	0-3	28080	-1.2	1.2	1.7	0.997	
	30	5-0	1020	-4.1	2.0	0.4	0.301	

Testing from independent simulated data

Testing from independent simulated data

➢TIGRs and STD databases

▶108 emis	sivity sn	ectra	(ASTE	R			
Database	Algorithm	W	n data	Bias	St. Dev.	RMSE	r
library)		range		(K)	(K)	(K)	
		(g·cm⁻²)					
	SW	0-6	32940	-0.1	1.2	1.2	0.997
TICP	SC	0-6	32940	-2.7	3.0	4.0	0.982
	SC	0-3	17820	-1.2	1.5	1.9	0.996
	SC	3-6	15120	-4.5	3.2	5.6	0.954
	SW	0-6	950940	0.0	0.6	0.6	0.999
TICP	SC	0-6	950940	-1.1	1.7	2.0	0.996
1101(1761	SC	0-3	886680	-0.8	0.9	1.2	0.999
	SC	3-0	58860	-4.0	3.5	5.4	0.957
	SW	0-0	249588	0.4	1.0	1.1	0.999
TICP	SC	0-6	249588	-2.2	3.7	4.3	0.981
11GR ₂₃₁₁	SC	0-3	186732	-1.0	1.1	1.5	0.998
	SC	3-6	54216	-4.5	4.6	6.5	0.936
	SW	0-6	35640	-0.2	0.9	0.9	0.998
стр	SC	0-6	35640	-2.1	2.6	3.3	0.989
510 ₆₆	SC	0-3	28080	-1.2	1.2	1.7	0.997
	SC	3-6	7020	-4.7	2.3	5.4	0.961

SW RMSEs are around 1 K, with a zero bias

Testing from independent simulated data

Testing from independent simulated data

➢TIGRs and STD databases

▶108 emi	ssivity	snectra	A (AST	FR			
Database	Algorithm		'n data '	Bias	St. Dev.	RMSE	r
indiary)		range		(K)	(K)	(K)	
		(g·cm·²)					
	SW	0-6	32940	-0.1	1.2	1.2	0.997
TIGR	SC	0-6	32940	-2.7	3.0	4.0	0.982
	SC	0-3	17820	-1.2	1.5	1.9	0.996
	SC	3-6	15120	-4.5	3.2	5.6	0.954
	SW	0-6	950940	0.0	0.6	0.6	0.999
TICP	SC	0-6	950940	-1.1	1.7	2.0	0.996
1000,1761	SC	0-3	080088	- Û.8	0.9	1.2	0.999
	SC	3-0	58860	-4.0	3.5	5.4	0.957
	SW	0-6	249588	0.4	1.0	1.1	0.999
TICP	SC	0-6	249588	-2.2	3.7	4.3	0.981
11GR ₂₃₁₁	SC	0-3	186732	-1.0	1.1	1.5	0.998
	SC	3-6	54216	-4.5	4.6	6.5	0.936
	SW	0-6	35640	-0.2	0.9	0.9	0.998
STD	SC	0-6	35640	-2.1	2.6	3.3	0.989
51066	SC	0-3	28080	-1.2	1.2	1.7	0.997
	SC	3-0	7020	-4.7	2.3	5.4	0.961

SC algorithm fails for moderate to high *w* values RMSE 3-4 K

Testing from independent simulated data

Testing from independent simulated data

TIGRs and STD databases

≻108 emi	issivity s	spectra	a (AST	FR			
Database	Algorithm		n data	Bias	St. Dev.	RMSE	r
library)		range		(K)	(K)	(K)	
		(g∙cm⁻²)					
	SW	0-6	32940	-0.1	1.2	1.2	0.997
TIGR	SC	0-6	32940	-2.7	3.0	4.0	0.982
	SC	0-3	17820	-1.2	1.5	1.9	0.996
	SC	3-6	15120	-4.5	3.2	5.6	0.954
	SW	0-6	950940	0.0	0.6	0.6	0.999
TICP	SC	0-0	950940	-1.1	1.7	2.0	0.996
11GR ₁₇₆₁	SC	0-3	880080	-0.8	0.9	1.2	0.999
	SC	3-6	58860	-4.0	3.5	5.4	0.957
	SW	0-6	249588	0.4	1.0	1.1	0.999
TICD	SC	0-6	240588	<u>-2.2</u>	3.7	13	0.981
11GR ₂₃₁₁	SC	0-3	186732	-1 0	1 1	15	0.998
	SC	3-6	54216	-4.5	4.6	6.5	0.936
	SW	0-6	35640	-0.2	0.9	0.9	0.998
STD	SC	0-6	35640	-2.1	2.6	3.3	0.989
STD ₆₆	SC	0-3	28080	-1.2	1.2	1.7	0.997
	SC	3-6	7020	-4.7	2.3	5.4	0.961

SC algorithm fails for moderate to high *w* vales When Atmospheric profiles with *w* values lower than 3 g·cm⁻² are selected, the SC algorithm provides RMSEs around 1.5 K

Test sites

Test sites

Instruments

RADIOMETER IR120 OPTRIS CT-LT15

.... CIMEL CE312-1 & 2 CIMEL CE312-2 ASTER 0.6 - Wide 12micron 0.5 11micron 9micron Radiometric response 0.4 8.7micron -8.3micron 03 0.2 0.1 13 15 10 11 12 14 Wavelength (micron)

IR120 & OPTRIS •Single broadband (8-14 μm) radiometers

CIMEL CE3122

•Multiband radiometer

- One broadband (8-14 mm)
- Five narrowbands similar to the ASTER TIR bands

Landsat data

- Five images
 - 2 Doñana (19 April 2013 and 5 May 2013)
 - 3 Barrax (1 June 2013, 24 June 2013, and 12 September 2013)
- > OLI/VNIR bands:
 - Atmospheric correction based on the Dark Object Subtract (DOS) was performed.
 - NDVI obtained with bands 5 (NIR) and 4 (red)
- TIRS bands:
 - Atmospheric correction performed with MOD07 product.
 - Atmospheric parameters (w, τ , L_u , L_d) obtained with MODTRAN-4.
 - LST estimated with algorithms presented previously.

Vicarious calibration

- Significant bias (around 3 K) between Landsat-8 derived data and measured values of LST.
- Result later confirmed by the announcement published in the USGS Landsat mission web page on September 16, 2013.
- 2 points for calibration (extreme data points, the lowest and highest radiance)

Intercomparison of algorithms

Results for the algorithms described above for ground-based measurements

Site	Date	W (glorg ²)	Plot	LST _{situ}	LST _{RTE}	LST _{sw}	LST _{sc}	D _{RTE}	D _{sw}	D _{sc}
		(g/cm²)		(K) Calibrati	(K) on Points	(K)	(K)	(K)	(K)	(K)
Barrax	23/05	1.1	Wheat	291.8	-	_	-	_	-	-
Doñana	22/06	3.2	Marsh	304.7	-	-	-	-	-	-
				Validatio	on Points					
	01/06	1.0	Wheat	292.8	292.3	291.4	292.4	-0.5	-1.4	-0.3
	24/06	1.4	Wheat	303.8	303.3	302.3	303.7	-0.4	-1.5	-0.1
Barrax	12/09	1.8	Corn	295.1	296.1	295.5	295.9	1.0	0.4	0.8
	12/09	1.8	Soil	301.1	301.0	300.0	300.8	-0.1	-1.0	-0.3
	12/09	1.8	Soil	302.6	301.8	301.6	301.6	-0.8	-1.0	-1.0
Doñana	19/04	2.0	Marsh	297.6	296.4	298.0	295.1	-1.2	0.4	-2.5
Bonana	05/05	1.7	Marsh	297.6	298.1	297.8	297.6	0.5	0.2	0.0
							Bias	-0.2	-0.6	-0.5
							SD	0.8	0.8	1.0
							RMSE	0.8	1.0	1.2

Interco Simila metho	<mark>mpariso</mark> ar results ods:	on of algo provided	prithms by all th	ne LST	Lo 0.6 Sta	w and no 3 K) andard c	egative E leviation	BIAS (- around	d	
Site	Date	W (g/cm²)	Plot	LST _{situ} (K)	LST _{RT} 1 / (K) RN	< LST _{sw} ∕IS E∕J ow	LST _{sc} er thân 1	D _{rte} 5(K)	D _{sw} (K)	D _{sc} (K)
				Calibrati	on Points					
Barrax	23/05	1.1	Wheat	291.8	-	-	-	-	-	-
Doñana	22/06	3.2	Marsh	304.7	-	-	-	-	-	-
				Validatio	on Points					
	01/06	1.0	Wheat	292.8	292.3	291.4	292.4	-0.5	-1.4	-0.3
	24/06	1.4	Wheat	303.8	303.3	302.3	303.7	-0.4	-1.5	-0.1
Barrax	12/09	1.8	Corn	295.1	296.1	295.5	295.9	1.0	0.4	0.8
	12/09	1.8	Soil	301.1	301.0	300.0	300.8	-0.1	-1.0	-0.3
	12/09	1.8	Soil	302.6	301.8	301.6	301.6	-0.8	-1.0	-1.0
Doñana	19/04	2.0	Marsh	297.6	296.4	298.0	295.1	-1.2	0.4	-2.5
	05/05	1.7	Marsh	297.6	298.1	297.8	297.6	0.5	0.2	0.0
							Bias	-0.2	-0.6	-0.5
							SD	0.8	0.8	1.0
							RMSE	0.8	1.0	1.2

LPVE (Land Product Validation and Evolution, ESA/ESRIN Frascati (Italy). January 28-30, 2014

Intercomparison of algorithms

w = 1.0 g·cm⁻²	Ba	rrax
	LST _{SW} -LST _{RTE} (K)	LST _{SC} -LST _{RTE} (K)
Bias	0.10	0.14
SD	0.44	0.02
RMSE	0.45	0.14

BARRAX TEST

- Similar bias for both algorithms
- Great standard deviation in SW algorithm

Intercomparison of algorithms

w = 3.2 g⋅cm ⁻²	Doñana					
	LST _{SW} -LST _{RTE} (K)	LST _{SC} -LST _{RTE} (K)				
Bias	0.82	1.20				
SD	0.61	0.28				
RMSE	1.02	1.23				

DOÑANA TEST SITE

- Greater BIAS in SC algorithm
- Great standard deviation in SW algorithm

Intercomparison of algorithms

- RMSE are lower over Barrax <0.5 K than over Doñana, and in all cases below <1.3 K.
- Differences in RMSE could be explained by the different W values over the two sites, < 1 g⋅cm⁻² for Barrax and near 3.5 g⋅cm⁻² for Doñana.

DOÑANA: *w* = 3.2 g·cm⁻² RMSE < 1.3 K

 Difference between temperatures at bands TIRS-1 and TIRS-2 also indicated a kind of missregistration problem between the two TIR bands that can be observed in the image difference between SW and inversion of the RTE.

Conclusions

- A SC and SW algorithm were presented to retrieve a LST with the new Landsat-8 TIRS bands with different physical assumptions.
- Advantage of the SC and SW algorithm are that only water vapor content and LSE are required as input.
- ➤ The application of LST algorithms to Landsat-8 imagery and the subsequent comparison of retrieved LST against *in situ* measurements revealed a significant bias (~3 K) that was corrected with a vicarious calibration (~0.4 and ~0.6 W·m⁻²·sr⁻¹·µm⁻¹to TIRS 1 and 2 respectively) over our test sites.
- Comparing ground-based measurements with LST values retrieved with all the algorithms, a RMSE lower than 1.5 K was obtained. This result also agrees with a validation exercise performed for an extensive simulated dataset.
- SW errors are lower than SC errors for increasing water vapour, and vice versa.
- The validation results should be considered preliminary pending of more acquisitions over the test sites using the permanent stations managed by the Global Change Unit (University of Valencia) and the Spanish CEOS-Spain project sites.

Acknowledgements

- Instituto Técnico Agronómico Provincial (ITAP)
- Reserva Biológica de Doñana (RBD)
- ➢ NASA and the U.S. Geological Survey (USGS)
- Ministerio de Economía y Competitividad:
 - CEOS-Spain, project AYA2011-29334-C02-01)
- Program U-INICIA VID 2012 (grant U-INICIA 4/0612) from University of Chile